
Exploring the Design Space of Automatically Synthesized Hints for Introductory
Programming Assignments
Ryo Suzuki [1], Gustavo Soares [2, 3], Elena Glassman [2], Andrew Head [2], Loris D’Antoni [4], and Bjoern Hartmann [2]

 [1] University of Colorado Boulder, [2] UC Berkeley, [3] UFCG Brazil, and [4] University of Wisconsin-Madison

Background
For massive programming courses,
personalized feedback does not scale.

personalized
feedback

traditional classroom
x1,000

large classroom
(e.g., UC Berkeley: 1,500 students)

Program synthesis techniques can enable
personalized feedback at scale.
It automatically find fix of students code and
then turn this fix into a sequence of hints.
(e.g., AutoGrader [Singh 2013], Refazer [Rolim 2017])

program synthesis personalized hints

Hint 1:
Look at line 2

Hint 2:
In total = 0 at line 2,
replace the value 0
with base.

example example

Problem
However, currently generated hints are

different from teachers’ hint-giving strategy.

e.g., at line 2 in “total = 0”, replace the value 0 with base

We don’t want to give away the solution
because it cuts off the learning opportunity.
Students also do not like to have just an answer.
(Interview with an intro CS course TA at UC Berkeley)

Challenges
A key challenge in
automatic programming feedback is

how to design
pedagogically-useful hints
as effective as manual teachers feedback.

Findings from an Interview

Observations of Q&A posts in Piazza

Teachers illustrate why the code fails:
e.g.) Check the value of total and count. The correct
behavior looks like this.
total = 1 2 3 4 5 6 [7] 6 5
count = 1 2 3 4 5 6 7 8 9

Teachers encourage students to explore
their code with interactive debuggers
e.g.) Try to examine the code in Python Tutor. What
happens when you call accumulate? Is the combiner
function that you’re passing correct?

Design Space of Synthesized Hints

Contributions
1. a characterization of five types of hints that can be generated by  

state-of-the-art synthesis techniques, informed by a formative study
2. the implementation of these hints in an interactive debugging interface  

appropriate for deployment and evaluation in a large programming classroom.

Analyze
132 Q&A posts in
an intro CS class

Categorize
teachers’ strategies

into 10 hint types

Identify
5 types of hints that
can be automated

Implement
these hints in an

interactive debugger

location hints data hints

behavior hints

1. location hints: point out
locations that need to be fixed.

2. data hints: suggest the
expected type or value of a
variable at a code trace.

3. behavior hints: highlight how
the incorrect behavior diverges
from the nearest solution.

4. example hints: provide an
example of input and output that
a program must satisfy.

5. transformation hints:
suggest abstract or concrete
fixes to apply to incorrect code.

