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Abstract

For massive programming classrooms, recent advances

in program synthesis offer means to automatically grade
and debug student submissions, and generate feedback at
scale. A key challenge for synthesis-based autograders is
how to design personalized feedback for students that is as
effective as manual feedback given by teachers today. To
understand the state of hint-giving practice, we analyzed
132 online Q&A posts and conducted a semi-structured in-
terview with a teacher from a local massive programming
class. We identified five types of teacher hints that can

also be generated by program synthesis. These hints de-
scribe transformations, locations, data, behavior, and exam-
ples. We describe our implementation of three of these hint
types. This work paves the way for future deployments of
automatic, pedagogically-useful programming hints driven
by program synthesis.
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def accumulate(combiner, base, n, term):
total = @
if n==0:
return combiner(base, @)
else:
while n>@:
total = combiner(term(n), total)
n-=1
return total

Input Expected  Actual

accumulate(mul, 2, 3, square) 72 )

Figure 1: An example of an
incorrect student submission for a
programming exercise in a massive
programming class. The bottom
widget shows typical feedback that
a student sees, comparing the
expected and actual, erroneous
output of the student’s program on
a set of test inputs.

def accumulate(combiner, base, n, term):
total = @
+ total = base
if n==0:
return combiner(base, ©)
else:
while n>e:
total = combiner(term(n), total)
n-=1
return total

Figure 2: An example of the
synthesized code fix for the student
mistake. This fix is generated by
using Refazer, an existing program
transformation system [15].

Introduction

Personalized, timely feedback can help students get un-
stuck and correct their misconceptions [2, 8]. Teachers’ per-
sonalized attention does not scale in massive programming
classes [3, 5]. Instead, it is common for teachers to provide
test case suites, which students can test their submissions
against (Figure 1).

This substitution has some drawbacks. While a teacher
might look at the student’s submission and recommend re-
viewing a particularly relevant lesson or attempt to reteach
an important concept, test case feedback can only point
out how the student submission does not return the right
answer. It can be difficult for a student to map failed test
results back to a specific error in their code.

Recent advances in program synthesis provide person-
alized feedback at scale; this feedback helps students fix
incorrect submissions to programming exercises [10, 14,
15, 17]. These systems use program synthesis to learn
code transformations that fix incorrect student submissions.
Fixes can be shown to students as bottom-out hints that ex-
plain the exact changes needed to fix the code [14, 17]. For
example, the synthesized fix in Figure 2 could be mapped
to feedback like “In the expression total = 0 inline 2, re-
place the value 0 with base.”.

Bottom-out hints alone can undermine the pedagogical
value of students debugging why their code is wrong. Well-
designed feedback helps students understand their prob-
lems and debug their own submissions [16, 18]. As we
found in our formative study, teachers prefer to present
higher-level feedback without giving away the solution.

A key challenge in automatic hint generation is providing
feedback that facilitates productive debugging, rather than
enabling a student to skip debugging altogether. In this pa-

per, we explore a design space of hints that can be auto-
matically generated from code transformations learned by
program synthesis. Our ultimate goal is to adapt the strate-
gies that a human teacher employs to automated hints
driven by program synthesis.

To understand the differnt types of hints teachers manually
give in programming classes, we analyzed 132 Q&A posts
from a discussion forum and interviewed a teaching assis-
tant from UC Berkeley’s introductory programming class.
We identified five types of hints that could be generated
from synthesized code transformations: transformation
hints, recommendations of abstract or concrete fixes to
apply to incorrect code; location hints, pointers to code
entities that need to be understood or fixed; data hints, the
expected type or value of a variable at one point in a trace;
behavior hints, descriptions of intended or abnormal dy-
namic program behavior; and example hints, clarifications
of the values and types of input and output that a program
must satisfy. We implemented prototypes for three of these
hints, embedded in an interactive debugging interface, to
help students answer clarifying questions about bugs in
their programs.

In this work, we contribute: (1) a characterization of five
types of hints that can be generated by state-of-the-art syn-
thesis techniques, informed by a formative study; (2) the
implementation of transformation, location, and data hints in
an interactive debugging interface, appropriate for deploy-
ment and evaluation in a massive programming classroom.

Related Work

Automated Feedback for Programming Assignment
Intelligent tutoring systems (ITS) often supply a sequence
of hints that descend from high-level pointers down to spe-
cific, bottom-out hints that spell out exactly how to generate



the correct solution. For example, in the Andes Physics Tu-
toring System, hints were delivered in a sequence: pointing,
teaching, and bottom-out [19]. ITS have been historically
expensive and time-consuming to build because they relied
heavily on experts to construct hints.

Recently, researchers have demonstrated how program
synthesis can generate some of those personalized and
automatic feedback typically found in ITS’s [10, 14, 15, 17].
For example, AutoGrader [17] can identify and fix a bug
in an incorrect code submission, and then automatically
generate sequences of increasingly specific hints about
where the bug is and what students need to change to fix it.

High-level hints that point to relevant class materials or at-
tempt to reteach an concept can be difficult to automatically
generate because they require more context or the deep
domain knowledge of a teacher. Recent work has demon-
strated how program analysis and synthesis can be used
as an aid for a teacher to scale feedback grounded in their
deep domain knowledge [5, 9]. While scaling up teacher ef-
fort, these systems still require teachers to manually review
and write hints for incorrect student work.

In contrast to that earlier work on scaling up teacher-written
feedback, this paper focuses on fully automated ways to
provide high-level hints, specifically for the context of writ-
ing code. D’Antoni et al. [3] has explored the similar design
challenge of automatically generated hints for the domain
of finite automata [3]. They propose two hints to explain
why the student solution is wrong and one hint to explain
how to fix the solution. Taking inspiration from this work,
we design data and behavior hints to help students answer
why question, and location and transformation hints to ad-
dress how question in the domain of introductory Python
programming assignments. While the simpler nature of the
automata domain allowed authors to propose hints that de-

scribe in a high-level language what the student solution
computes, in our domain, we compare the internal state of
the incorrect submission to the fixed one to explain why the
code is incorrect.

Principles for Feedback Design

Prior work describes the following four essential elements
that debugging assistants should provide [13]: (1) help stu-
dents locate the bug [16, 20]; (2) demonstrate an instance
in which the code fails [1, 20]; (3) explain the behavior of
code with a visual execution of the code [1, 7, 6]; (4) help
students comprehend the relationship between the symp-
toms and the cause of the error [12, 11].

We design different types of hints that target different as-
pects of these elements: (1) location hints may help stu-
dents locate errors, (2) data and example hints may help
students comprehend code through failed test cases, and
(3-4) behavior hints may help students understand dynamic
behavior and map the relationship between the error and
the cause.

Formative Study

To understand how teaching assistants provide hints, we
conducted a formative study with the teaching staff of an
introductory programming class (UC Berkeley CS61A). We
first reviewed 132 Q&A posts in CS61A’s online forum to
investigate how teachers gave hints in response to student
questions to one particular programming assignment. We
then conducted a semi-structured interview with a teaching
assistant from the same course.

The first author performed open coding on the 132 Q&A
posts by reading each post and determining common themes
in the structure and focus of teachers hints. Two authors re-
viewed the resulting hint types, composing a definition and
hint example for each type. They independently performed



axial coding to tag each post with hint types it contained.
Then the authors reviewed discrepancies in their analy-

sis results, resolving differences by discussing them un-

til reaching consensus. The analysis yielded ten types of
hints; location, data, behavior, transformation, example, us-
age, references, diagnosis, PythonTutor, and diagram. Of
the 132 posts, 70 contained at least one teacher response
with a hint of one of these ten types. Of the ten types iden-
tified through coding Q&A posts, we chose five (transforma-
tion, location, data, behavior, and example hints) that are
most amenable to program synthesis.

Hints answer “why” questions about failing code.

When debugging incorrect code, students in CS61A receive
feedback from an autograder as a list of test cases that their
code fails. However, this feedback was not always enough:
students often asked in the class forum for help understand-
ing why their code failed. Teachers would point out failed
test cases (posts 64, 80, 112, 117), unexpected values (63,
100), and syntax and runtime errors (56, 86, 91).

In response to these “why” questions, teachers recom-
mended that students learn more about the behavior of
their programs. One common piece of feedback (appearing
19 times) was to run their code in PythonTutor [7], an inter-
active code visualization tool. However, students could be
overwhelmed by too much information. Teaching assistants
provided scaffolding by pointing to specific locations (14
times), expected data and types (5 times), and clarifications
of runtime behavior (12 times), to help focus attention.

Hints rarely provide exact fixes

Recent program synthesis techniques can easily recom-
mend concrete fixes to student code. However, teachers
rarely hinted at exact fixes. Concrete fixes were typically
only given for one-off syntax errors like missing parenthe-
ses (posts 56, 105, 127). In our semi-structured interview

with a teacher from this course, they clarified, “We don’t
want to give away the solution because it cuts off the learn-
ing opportunity. Students also do not like to have just an
answer. So, instead, we try to give a conceptual guide like
‘Have you thought about X?’, or ‘What happens if X?”

In addition to the four design principles discussed based on
prior work, we identified following design goals to improve
the potential of hints driven by program synthesis:

—_

. Only rarely provide bottom-out hints

2. Integrate hints with existing interactive debugging
tools to encourage students to explore their code

3. Provide guidance through pointers to specific code

locations and runtime behavior

Designing Program Synthesis-Driven Hints
Based on our review of related work and our formative
study of teacher feedback, we designed five types of hints
that can be generated with synthesized program repair. In
this section, we introduce the hint types with examples of
teacher feedback and describe an implementation strategy
for each hint type. We categorized the teachers responses
into five types of hints based on the following definitions:
transformation that describes concrete or abstract fix that
needs to be made, location that helps to locate the error by
pointing to concrete or abstract location in code, data that
describes incorrect state or type of data at a point in the
trace, behavior that points out sequence of calls or data
that represent behavior that needs to be changed, example
that clarifies specification for program or sub-program by
describing types/values of inputs/outputs of the function.

Our current implementation is based on Refazer [15], an
existing program transformation system. As inputs, our
system takes (1) student’s incorrect code, (2) fixed code



Transformation Hint
Replace O with base in line 2

def ate( . , n, of
=0
if n==0:
return (base, @)
else:
while n>0:

return (base, )

Figure 3: Transformation Hints

Location Hint
Check the value of total in line 2

def C o , N, D:
=0
if n==0:
return (base, )
else:
while n>0:

return (base, J

Figure 4: Location Hints

Data Hint
Running accumulate(mul, 2, 3, square)

Expected 72 butgot O

>

def C , , n, D: # acc
=0 # total = 0 should be total = 2
if n==0:
return (base, 0)
else:
while n>0:
= (term(n), )
=1
return (base, )

(mul, 2, 3, ) # call: accumula

Figure 5: Data Hints

synthesized by Refazer, (3) transformation rules identified
by Refazer, and (4) list of failed test results detected by an
autograder.

Transformation Hints
Transformation hints provide information about concrete
changes to code that can fix the current code:

“In your n == 1 base case, you should be calling term(1)
and not term(0). Remember that the term function is only
defined from 1 to n inclusive.” (post 82)

Refazer can generate abstract code transformations as a
set of the abstract syntax tree (AST) operations. For ex-
ample, an operation to fix the mistake in Figure 2 is Up-
date(ConstantExpressionNode, NameExpressionNode).
Our system then turns these transformation rules into nat-
ural language by translating the abstract expressions (e.g.
NameExpressionNode) into concrete expressions (e.g.,
base). Figure 3 shows an example transformation hint.

Location Hints

Currently, transformation hints generated by our system is
equivalent to bottom-out hints. However, teachers may want
to elide details of exactly where or how changes need to

be applied (post 123). Location hints are one level more
abstract than transformation hints. Location hints can be
not only pointing out a position in code, but also focus a
student’s attention on a particular code structure or entity
that needs attention:

“Look carefully at your else case and also the condition of
your i f. Is it doing what you expect it to?” (post 50)

The location that a student needs to fix in incorrect code
can be detected by applying a synthesized transformation
to an incorrect submission and marking which lines have

changed (Figure 4). The level of abstraction of a location
hint could vary from line number (“there is an error on line
3”) to structure-aware (“take another look at your lambda”).

Data Hints

While transformation and location hints point out where
code is incorrect and how it can be changed, data and be-
havior hints help illuminate why a student’s code fails. Data
hints point out important values or types of variables:

“Repeated returns a function. So, may | ask what are this
returned function argument and return types. ” (post 27)

Novice learners often struggle to comprehend the behavior
of the code without concrete examples of the data [11, 21].
Data hints provide information about expected internal data
values of the program during a debugging session. Given
the failed test case, these hints can be implemented by
comparing the dynamic execution trace of an incorrect and
fixed submission (Figure 5). When the system detects that
a value of a variable in an incorrect submission diverges
from that in the fixed submission, it can pause execution
and highlight the difference between the expected value
and the actual value.

Behavior Hints

One important step in the debugging process is to under-
stand the behavior of the program [4]. In contrast to data
hints which highlight a particular moment of the program
execution, behavior hints describe the difference in se-
quences of program’s state or control flow:

“Think about what the counter value is, and what the total
value is. Is this correct? Remember, ping pong looks like:
total =123 456 [7] 65

count =123 456789

for the first 9 elements. ” (post 28)



Behavioral Hint
Running accumulate(add, 11, 5, identity)

Expected 26 butgot 16
e C R

while i <

Expected | 11
Result | 1

return

Behavioral Hint

Running accumulate(add, 11, 5, identity)

Expected 26 butgot 16

Expected | 11 | 12 | 14 1 17 | 21 | 26
Result | 11 21 41 7111116

o B
return

Figure 6: Behavior Hints

Although we acknowledge that the current implementation
of behavior hints only works for a subset of student mis-
takes, we expect that behavior hints can be implemented
using the same infrastructure as data hints. Our system
stores the execution results as a sequence of the internal
state. By comparing the difference in the sequences of the
internal states, the system can highlight divergent behavior
between the expected and current incorrect code, or as rep-
resentations of control flow, both of which we observed in
our formative study (Figure 6).

Example Hints

Example hints clarify the specification of a programming
assignment by describing the expected input and output
types and values for code constructs:

“the identity function is a function that takes in some value x

and just spits that value back out. For example, identity (4)

returns 4" (post 7)

We also observed that teachers provided examples of how
to use lower-level constructs, such as Python lambdas and
ternary operators. To implement example hints, we plan to
extract the list of Python constructs and APIs presented in
the code changed, then search for examples of code snip-
pets from online resources or course documentation.

Discussion

There are three open questions. First, we have not evalu-
ated how pedagogically useful these hints are. We plan to
conduct an in-class user study to evaluate the quantitative
(e.g., number of attempts or time spent to fix a bug) and
qualitative (e.g., how useful a hint is for submitting correct
code or understanding the student’s initial mistake) value of
these hints.

Second, we need to investigate how and when these hints
should be shown to students. One standard practice is

to show hints in sequence from high-level hints to bottom-
out hints [19]. Such sequences can be also algorithmically
determined based on tree edit distance [3]. Alternatively,
mixed-initiative approaches might enable teachers to spec-
ify these sequences or level of abstraction without losing
scalability [9]. We will explore both approaches and evalu-
ate how these sequences affect learning outcomes.

Third, we are interested in investigating whether our system
can provide useful hints beyond the introductory classroom.
Our hints rely on the capabilities of program synthesis tech-
niques to discover code transformations that fix incorrect
code. While such techniques have been demonstrated on
short assignments in introductory programming classrooms,
in the future it may be possible to learn generalizable fixes
for larger, more complex programs.
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