
Reactile: Programming Swarm User Interfaces
through Direct Physical Manipulation

Ryo Suzuki1, Jun Kato2, Mark D. Gross1, Tom Yeh1

1University of Colorado Boulder, 2National Institute of Advanced Industrial Science and Technology
{ryo.suzuki, mdgross, tom.yeh}@colorado.edu, jun.kato@aist.go.jp

Figure 1. Reactile is a programming environment for swarm user interfaces. Reactile leverages physical demonstration for attribute abstraction and
specification of data binding in Swarm UIs. Figures show an overview of data physicalization example (A), and a workflow to create a graph using
Reactile (B-D). Reactile actuates a swarm of small magnets using PCB-based electromagnetic coils and displays program states using a projector.

ABSTRACT
We explore a new approach to programming swarm user in-
terfaces (Swarm UI) by leveraging direct physical manipu-
lation. Existing Swarm UI applications are written using a
robot programming framework: users work on a computer
screen and think in terms of low-level controls. In contrast,
our approach allows programmers to work in physical space
by directly manipulating objects and think in terms of high-
level interface design. Inspired by current UI programming
practices, we introduce a four-step workflow—create elements,
abstract attributes, specify behaviors, and propagate changes—
for Swarm UI programming. We propose a set of direct physi-
cal manipulation techniques to support each step in this work-
flow. To demonstrate these concepts, we developed Reac-
tile, a Swarm UI programming environment that actuates a
swarm of small magnets and displays spatial information of
program states using a DLP projector. Two user studies—an
in-class survey with 148 students and a lab interview with
eight participants—confirm that our approach is intuitive and
understandable for programming Swarm UIs.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
swarm user interfaces; tangible programming; programming
by demonstration; direct manipulation
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3173773

INTRODUCTION
In recent years, Swarm User Interfaces (Swarm UI) [22] have
emerged as a new paradigm of human-computer interaction.
While the idea of coordinated miniature robots was originally
proposed in the literature of swarm and micro-robotic sys-
tems [32, 36], HCI researchers have explored the use of these
robots as a user interface [22]. In such interface, swarm robots
can dynamically form shapes and morph to other shapes to
display information in response to user inputs and surrounding
environments [5, 21, 22]. Recent research has demonstrated
the great potential of Swarm UI in many application domains,
such as dynamic data physicalization [22], simulations and
problem-solving [31, 30], wearable and tangible displays [5,
21], and accessibility assistants [48]. This emerging interac-
tion paradigm opens up a new opportunity for practitioners to
build novel applications for Human-Swarm Interaction [21].

However, this opportunity is currently limited to highly skilled
programmers who are proficient in robot programming. For
typical programmers inexperienced in robot programming
who wish to build a Swarm UI application, it is unclear if
the robot programming approach is the most appropriate for
UI programming. To design interactive UI applications, pro-
grammers often must think in terms of higher-level design for
user interaction, whereas robot programming tends to focus
on low-level controls of sensors and actuators. Historically,
a novel UI platform is adopted only after the advent of an
effective programming tool that empowers a larger developer
community, and even end-users, to create many applications
for the platform; for example, HyperCard for interactive hyper-
media, Phidgets for physical interfaces, and Interface Builder
for GUI applications. We stipulate that current approaches
to programming Swarm UI are too robot-centric to be effec-
tive for building rich and interactive applications. Then, what
would be a better alternative?

1

https://doi.org/10.1145/3173574.3173773

As a first step toward answering this question, this paper ex-
plores a new approach to programming Swarm UI applications.
To design an appropriate workflow for Swarm UI program-
ming, we look into existing UI programming paradigm for
inspiration. The common workflow of UI programming can
be decomposed into four basic steps: create elements, abstract
attributes, specify behaviors, and propagate changes. Based on
these insights, we propose the following four-step workflow
for Swarm UI programming: 1) creates shapes, 2) abstracts
shape attributes as variables, 3) specifies data-bindings be-
tween dynamic attributes, and 4) the system changes shapes
in response to user inputs (See Figure 2). With this work-
flow, a programmer can think in terms of high-level interface
and interaction design to build interactive Swarm UI appli-
cations, compared to existing, low-level, robot programming
approaches.

Moreover, given the physical nature of swarm user interfaces,
we propose to support this programming workflow via direct
physical manipulation. The motivation comes from an obser-
vation that the dominant programming environment is largely
limited to coding on a two-dimensional computer screen [1].
This arrangement creates a large gulf of execution [26]; de-
velopers must continuously switch contexts between writing
code on a screen and testing in physical space, which causes
a significant cognitive distance between physical and virtual
worlds [6]. To bridge this gulf, we present a set of direct
manipulation techniques to perform each step of Swarm UI
programming workflow. This approach allows a programmer
to write and view a program in the same physical context,
eliminating the aforementioned gulf.

To demonstrate these concepts, we developed Reactile, a pro-
gramming environment for Swarm UI applications. Reactile
actuates a swarm of small magnetic markers to move on a
2D canvas with electromagnetic force. We designed and fab-
ricated a board of electromagnetic coil arrays (3,200 coils),
which covers an 80 cm x 40 cm area. Reactile tracks the
marker positions and detects interactions between a user and
swarm markers using a standard RGB camera and computer
vision techniques. The system displays spatial information
using a DLP projector to allow a programmer to see program
states in the same physical context. We show the proposed
workflow and Reactile system can be effective to build vari-
ous interactive applications such as data physicalization and
explorable simulations.

To evaluate the proposed workflow and interaction design, we
conducted two user studies; 1) a large-scale in-class survey
with 148 students, and 2) an in-depth lab study with eight
participants. Participants generally agreed that the proposed
user interactions are intuitive (6.0), and the program is easy
to understand (6.1), modify (5.0), and flexible for various
applications (6.1), in response to 7-point Likert scale questions.
The survey study also shows that the majority of students
can understand the affordance of attribute abstraction (68-
87%) and correctly predict the dynamic program behavior (33-
46%). Based on qualitative feedback, we discuss three aspects
(usability, interpretability, and flexibility) of our approach and
draw design guidelines for Swarm UI programming.

In summary, we contribute:

� a design of the Swarm UI programming scheme, proposing
a four-step workflow informed by existing UI programming.

� a set of interaction techniques that leverage direct physical
manipulation to perform each step in this workflow.

� a demonstration of these concepts with Reactile, a working
prototype consisting of a hardware device that actuates a
swarm of magnetic markers and a software system that
tracks user interaction and displays spatial information of
program states.

� a mixed-method evaluation of our proposed approach,
which shows potential advantages.

BACKGROUND AND MOTIVATION
Recent work in HCI envisions the world beyond tangible
bits [16] where human interact with computers through dy-
namic physical objects. Under the vision of Programmable
Matter [49], Ultimate Display [45], and Radical Atoms [15],
research systems in actuated tangible interfaces [29, 33] and
shape-changing interfaces [7, 35] have demonstrated inter-
faces that can dynamically change their physical shape in
response to user interaction. In particular, a growing body
of research investigates the potential of utilizing swarm of
objects as user interfaces. Example applications include data
physicalization [17, 22], wearable and ambient displays [5,
21], dynamic physical affordances and constraints [31], simu-
lations and problem-solving [29], STEM education [27], and
accessibility for people with visual impairments [48]. Despite
such enthusiasm, it is still not easy to create swarm user in-
terfaces, as discussed above. In this section, we review prior
methods and current approaches to programming swarm user
interfaces and explain the motivation behind our work.

Toolkits for Robot Programming
Swarm user interfaces are usually implemented as a swarm of
robots that serve as interfaces between a host computer and
the users. However, most robotics research has been about
designing autonomous behaviors of a single robot, and existing
robot programming systems [2] are typically designed for that
purpose. Prior work has explored end-user robot programming
by simplifying the programming experience. For example,
the LEGO Mindstorms series1 provide a visual programming
environment in which children can control the behavior of
a LEGO-based robot. HCI researchers have explored using
a single mobile robot as user interfaces [11], using photos
of robots in the code editor to aid comprehension of posture
data [19], and using GUI to program cooking robots [43].

Only relatively recently has the community begin exploring
the potential of multi-robot systems, forming the research field
of swarm robotics [3]. While middleware and software li-
braries for robotics engineers help abstracting the hardware,
network, and algorithm layers, most do not provide special-
ized features for swarm robots, and using these libraries to
build a working swarm robotics systems typically requires
understanding complex layers of abstraction.

1LEGO Mindstorms. https://www.lego.com/en-us/mindstorms

2

https://www.lego.com/en-us/mindstorms

To allow the programmer to see the status of robots, several
systems use the top-down view of the environment for showing
debugging information and defining the absolute coordinates.
Several middleware platforms [10] and toolkits [18] implement
such features and enable programming of multiple mobile
robots. In particular, Phybots [18] is designed for interaction
designers without prior knowledge of robot programming.
These toolkits were used in several HCI research projects that
involve multiple mobile robots [41, 43]. More recent work
includes Zooids [22], an open source hardware and software
framework specialized for building Swarm UIs.

However, these environments typically involve writing code
on a computer screen and then deploying the code to see re-
sults in the physical space. If the robot behaves unexpectedly,
the programmer must mentally map the error of the physical
robot back to the source code. This creates a large gulf of
execution for programmers and a great cognitive distance be-
tween physical and virtual spaces [6]. In contrast, we explore
an alternative approach where the program can be manipulated
through embodied interaction in the physical world.

Tangible Programming Languages
The idea of programming in the physical space is not new. Tan-
gible programming languages [46] leverage embodied phys-
ical interaction to construct a program. While conventional
programming languages use textual or visual representations,
tangible programming allows a programmer to manipulate
the structure of a program using physical objects [9, 12, 14,
25, 40, 54]. Prior work has shown that tangible programming
languages can be significantly more engaging than a visual pro-
gramming language, particularly in educational contexts [13].

However, while these systems make program structures tan-
gible, the program states are not visible and tangible in the
physical space. For example, users can manipulate control
flow of the program by constructing blocks that represent pro-
gram structures such as for loop and if else, but users
cannot see and manipulate the dynamic states of a program in
the physical space. In contrast, our approach shows dynamic
program states as spatial information. This approach enables
the user to see how the program behaves and understand the
program by manipulating tangible objects.

Programming by Demonstrations
To lower the barrier of programming, Programming by Demon-
strations aims to enable end-users to program robot behaviors
without writing code. For example, Topobo [34] lets a user
demonstrate a movement, which is recorded and can later be
played back to animate the robot.

However, since programming by demonstration generates the
program by an inference, it is difficult for users to explicitly
specify desired behaviors. In these cases, if the generated re-
sult is different from a programmer’s expectations, not enough
clue is provided to help the programmer understand the error
and fix it. In addition, in these systems, the internal states of
a program are hidden, but it is well known that the hidden
states make it difficult to understand and fix unexpected behav-
iors [24, 47]. Thus, existing programming by demonstration
systems are often used for simple repetitive operations of a

single robot. Our approach, by contrast, allows users to ex-
plicitly specify the program behavior, similar to the traditional
programming paradigm. While we also infer the attribute type
from the user’s demonstration in the attribute abstraction step,
the inference result can be always seen and fixed by the user.
We will show that this approach could be more effective to
program interactive behaviors of multiple robots.

Direct Physical Manipulation Interfaces
Direct manipulation techniques in the physical space have
been studied since 1990s [51, 55]. Such interfaces lever-
age embodied physical interaction to create static elements
(e.g., 3D models in Mockup Builder [4]) or interact with pre-
programmed behaviors (e.g., optical simulation in HOBIT [8]
or I/O Bulb [50]). However, there have been fewer investiga-
tions in direct manipulation of authoring dynamic behaviors.
Historically, authoring dynamic behaviors has been done by
coding as it requires abstraction [53], while recent research
started exploring the direct manipulation of dynamic behavior
in GUI applications [20, 38, 39, 52]. The core question in our
paper is how we can expand this to interfaces in the physical
world. While this paper specifically focuses on programming
of Swarm UI, we expect the direct manipulation programming
will become more important in spatial and physical interfaces,
such as tangible, augmented reality, and shape-changing inter-
faces.

DESIGNING SWARM UI PROGRAMMING
We propose Swarm UI Programming, a new approach to build-
ing Swarm UI applications that focus on high-level UI design.
The workflow of Swarm UI programming is inspired by the ex-
isting UI programming paradigm. We first review the common
workflow of UI programming and decompose it into four basic
elements that represent high-level steps. Then we discuss how
to apply this workflow to Swarm UI programming.

Four Elements of Existing UI Programming
As we see in well-known design patterns for interactive UI ap-
plications such as reactive programming paradigm, the Model-
View-Controller, and the observer pattern, they share a com-
mon workflow consisting of four basic elements: 1) create
elements, 2) abstract attributes, 3) specify behaviors, and
4) propagate changes.

Consider, for example, making an interactive web application
using HTML and JavaScript: 1) Create elements: A user
first creates basic elements of interface with HTML DOM
such as div, button, and text. 2) Abstract attributes:
Then, the user abstracts these attributes as variables, such
as the background color or font-size. These attributes can be
changed dynamically by updating variable values. 3) Spec-
ify behaviors: The user specifies behaviors to describe how
abstracted attributes will change with data-bindings. For ex-
ample, one can specify that the button’s background-color
will change in response to the text attribute of the input el-
ement. 4) Propagate changes: Based on the user-defined
data-bindings, the system automatically propagates the change
by detecting user input or data changes. For example, detect-
ing an input value such as “brown”, automatically changes the
background-color attribute of the button element.

3

	Introduction
	Background and Motivation
	Toolkits for Robot Programming
	Tangible Programming Languages
	Programming by Demonstrations
	Direct Physical Manipulation Interfaces

	Designing Swarm UI Programming
	Four Elements of Existing UI Programming
	Four Elements of Swarm UI Programming

	Swarm UI Programming via Direct Manipulation
	Step 1. Create Elements by Drawing and Construction
	Step 2. Abstract Attributes through Demonstrations
	Step 3. Specify Behaviors by Connecting Attributes
	Step 4. Propagate Changes through Physical Interaction

	Reactile: System and Implementation
	Hardware
	Electromagnetic Actuation
	Passive Magnetic Marker
	Marker Control

	Software
	Marker Tracking
	Shape Detection
	Target Assignment and Path Planning
	Attributes Abstraction
	Data-binding and Propagation

	Possible Application Scenarios
	Data Physicalization
	Explorable Simulations
	Ambient Display and Animation

	User Study
	Participants
	Method
	Result

	Discussion
	Limitations and Future Work
	Acknowledgments
	References

