
Interactive and Collaborative Source Code
Annotation

Ryo Suzuki
University of Tokyo, Tokyo, Japan

Email: 1253852881@mail.ecc.u-tokyo.ac.jp

Abstract—Software documentation plays an important role in
sharing the knowledge behind source code between distributed
programmers. Good documentation makes source code easier to
understand; on the other hand, developers have to constantly
update the documentation whenever the source code changes.
Developers will benefit from an automated tool that simplifies
keeping documentation up-to-date and facilitates collaborative
editing. In this paper, we explore the concept of collaborative
code annotation by combining the idea from crowdsourcing. We
introduce Cumiki, a web-based collaborative annotation tool that
makes it easier for crowds of developers to collaboratively create
the up-to-date documentation. This paper describes the user
interface, the mechanism, and its implementation, and discusses
the possible usage scenarios.

I. INTRODUCTION

Software documentation is helpful for programmers to
understand how features of software are implemented. To
make a good and easy-to-read documentation, developers
should not only keep it up-to-date but also add traceable link
between code snippets and source code. Several ideas have
been proposed to assist programmers to create documentation
effectively. One solution is an embedded documentation gen-
erator. This kind of tools such as RDoc 1 enables to generate
software documentation from a set of specially commented
source code files. In addition, it has also been proposed that
information retrieval can be used to link between source
code and documentation [1]. Developers will benefit from an
automated tool that (1) simplifies keeping documentation up-
to-date and (2) facilitates collaborative editing.

In this paper, we explore the different solution through
converting the documentation problem to a crowd-sourcing
problem. We propose Cumiki 2, a web-based source code
annotation tool, that enables users to generate documentation
that is closely integrated with the source code hosted on
GitHub. Moreover, our interactive annotation system makes
it possible that crowds of developers annotate the source code
without editing the source code. Therefore, it is likely that
they are able to share tips, ask and answer questions and
accumulate their knowledge on the source code interactively
and collaboratively.

II. RELATED WORK

There is growing interest in the tools that support col-
laborative software development. Collabode [2] is a browser-

1http://rdoc.sourceforge.net/
2http://cumiki.com/

Fig. 1. Interface for source code annotation

based collaborative programming editor. Collabode provides
an environment that enables multiple users to edit source
code synchronousely. The other form of collaboration is
crowdsourcing. In crowdsourcing, CrowdCode [5] is an online
Integrated Development Environment (IDE) for microtask
programming that enables crowds of developers to write
code. Moreover, Stack Overflow 3 is one of the examples
of successful crowdsourcing in software engineering. Prior
study shows that over 92% of questions are answered in a
median time of 11 minutes [6]. In the literature of IDE,
several systems have been proposed to integrate rich contextual
information into IDE. Codelets [7] is an online code editor
that has an interactive helper widget to assist the user in
understanding and integrating examples on the web. Codetrail
[3] and HyperSource [4] embrace an idea that connects source
code and online resources such as documentation, examples,
error descriptions, and code snippets.

III. IMPLEMENTATION

Cumiki is implemented as a web application on Amazon
EC2 and its user interface is built with HTML and JavaScript
and runs entirely within the browser. The system is closely
integrated with a GitHub repository and users can annotate
source code of any public repository hosted on GitHub. For
extracting information from a git repository, we use the rugged

3http://stackoverflow.com/



4 Ruby library. As a web-based annotation tool, Cumiki has
the following features.
Interactive and collaborative annotation: JavaScript-based
user interface enables users to annotate the code by clicking
and dragging. After annotating the source code, Cumiki auto-
matically generate documentation with code snippets. The user
can edit the annotation with a rich content such as code blocks,
images, videos, and even mathematical equations. These rich
contextual information makes it easier to understand how the
code works. Unlike the embedded documentation generator,
we take an approach to separate code and documentation.
Therefore, different developers can annotate the same source
file, as a result, crowds of developers can share and accumulate
their knowledge about the source code.
Traceability and automated updating: When a user finish
annotating the code in browser, then the system saves the
information of git commit id, git blob id, the file path, and
the line number of the code snippet. When the linked file is
updated, the system compares the diff of git commit history,
and then calculates the change of the line number to adjust
the positions of the code snippet. This mechanism provides
two useful features. First, a user can see the association
between source code and documentation. As Figure.2 shows,
when a button is clicked, Cumiki shows the entire code and
highlights a certain piece of code. Second, it also allows
users to keep documentation up-to-date even when editing the
code, changing the file path, and even merging with other git
branches.

IV. USAGE SCENARIO

We consider the following usage scenarios in which this
system can be the most effectively used. First use case is in
a large open source software project. Separation between an
annotation and source code makes it easier for developers to
Second scenario is in an organization. Our system can be also
useful to promote effective knowledge sharing regarding with
software development within a group. Finally, Cumiki can
also be used for educational purpose by assisting instructors
to create a step-by-step tutorial. In general, it is difficult
for students without coding experience to read the code, but
our system can help them to understand the source code by
highlighting an important point.

V. CONCLUSION

This paper introduces an interactive code annotation tool
for collaborative documentation creation. Our contribution is

to propose a concept of social and collaborative source code
annotation, and to implement the system that makes it possible
that crowds of developers can annotate the source code without
conflicting each other. Finally, we discuss our system can be
used not only for sharing the knowledge within a group of
developers but also for the purpose of education.

Fig. 2. link between code and documentation.

ACKNOWLEDGEMENT

This work has been supported by the JSPS KAKENHI
grant numbers 25-10499.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo.
Recovering traceability links between code and documentation. Software
Engineering, IEEE Transactions on, 28(10):970–983, 2002.

[2] M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding
in a web ide. In Proc. of UIST’11, pages 155–164. ACM, 2011.

[3] M. Goldman and R. C. Miller. Codetrail: Connecting source code and
web resources. Journal of Visual Languages & Computing, 20(4):223–
235, 2009.

[4] B. Hartmann, M. Dhillon, and M. K. Chan. Hypersource: bridging the
gap between source and code-related web sites. In Proc. of CHI’11, pages
2207–2210. ACM, 2011.

[5] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der Hoek.
Microtask programming: Building software with a crowd. In Proc. of
UIST’14, pages 43–54. ACM, 2014.

[6] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann.
Design lessons from the fastest q&a site in the west. In Proc. of CHI’11,
pages 2857–2866. ACM, 2011.

[7] S. Oney and J. Brandt. Codelets: linking interactive documentation and
example code in the editor. In Proc. of CHI’12, pages 2697–2706. ACM,
2012.


