
Teaching Statement - Ryo Suzuki

Teaching Experience

Albert Einstein once said “information is not knowledge. The only source
of knowledge is experience. You need experience to gain wisdom.” His
words best reflect my pedagogical philosophy—teaching is not
providing knowledge, but providing an opportunity to apply the
knowledge to a real-world problem. My teaching experiences at
the University of Colorado Boulder demonstrate and reflect the im-
portance of this perspective. As a teaching assistant for Prof. Shaun
Kane’s Fundamentals of Human-Computer Interaction class, I led
two weekly design studio sessions with forty students each. The goal
of the sessions was to help our students familiarize themselves with
the methods learned in the class, including sketching techniques for
ideation, conducting user interviews, rapid prototyping, and heuris-
tic evaluations of each other’s work. Through these sessions, I aimed
to develop their understanding by providing real-world examples of
how the methods are used and encouraging them to fill the gap between
theory and practice through learning by doing. Based on the Faculty
Course Questionnaire (FCQ), this approach worked well—my session
was highly rated (4.6/5), and the students strongly agreed the course
was helpful (4.2/5) and that the TA was supportive and respectful of
students (4.4/5).

Figure 1: Hands-on activities in the soft
robotics class.

I also served as a teaching assistant for Prof. Mark Gross’s graduate-
level Soft Robotics class. In contrast to the undergraduate HCI
course, this course was a project-oriented class—students were sup-
posed to learn the literature of soft robotics and develop their own
robots or actuators by the end of the semester. My main role was to
support their research process through apprenticeship. Leveraging
my knowledge and expertise in making soft robots, I nurtured their
ideation processes by providing relevant resources and I advanced
their prototyping processes through my technical support of their
software and hardware implementation. While the students had di-
verse skillsets from differing disciplines (CS, ME, architecture, design,
etc), all successfully completed their final projects, one of which led
to a peer-reviewed publication 1. 1 H. Hedayati et al. Hugbot: A soft

robot designed to give human-like
hugs. In Proceedings of IDC. ACM, 2019

Through these differing teaching experiences, I gained a richer
sense of how to organize curriculum to best support students.



teaching statement - ryo suzuki 2

Mentoring Experience

During my Ph.D. and research internships, I have been fortunate to
mentor ten talented students at multiple universities. 2 I mentored 2 A list of students I mentored during

my Ph.D. at CU Boulder as well as
research internships at Stanford Univer-
sity, UC Berkeley, and the Univerity of
Tokyo/Keio University.

• Kevin Kuwata (ECE Master at CU
Boulder, now Sparkfun X)

• Zhixian Jin (ECE Undergrad at CU
Boulder)

• James Bohn (CS Undergrad at CU
Boulder)

• Chrystalina Pharr (ME Undergrad
at CU Boulder)

• Ryosuke Nakayama (Media Design
Master at Keio University, now
Sony)

• Takayuki Hirai (Media Design
Master at Keio University)

• Takumi Murayama (Media Design
Undergrad at Keio University)

• Michelle Lam (CS Undergrad at
Stanford University)

• Juan Marroquin (CS Undergrad at
Stanford University, now Microsoft)

• Adam Ginzberg (CS Undergrad at
Stanford University, now Coda.io)

these students for at least three months with two weekly in-person
meetings. I helped them gain experiences in each aspect of HCI re-
search, including the ideation phase (e.g., helping them identify an
interesting yet solvable research question; collaboratively making a
concept video with stop-motion animation), the prototyping phase
(e.g., guiding them to develop a minimum viable product to quickly test
their most critical hypothesis), and the documentation phase (e.g.,
revising their writings; demonstrating techniques to make clear fig-
ures and videos). The results were very successful. We had six full
conference papers, including two CHI and one UIST paper. One of
my mentees won the best thesis award at his university based on our
two top conference papers, one of which won the best paper award.

Through these mentoring experiences, I learned three guiding
principles. 1) Give concrete and actionable advice: Abstract, high-
level advice may not provide sufficient guidance toward next steps,
which often makes students—particularly junior students—get stuck.
I always try to give concrete and actionable suggestions to support
their forward progress. 2) Decompose big visions into small tasks:
Students also get stuck with big ideas without having concrete exe-
cution plans. In this case, I show them how to break the goal down
into several milestones, and further break down each milestone to a
task they can complete within a week. 3) Show instead of tell: As
a mentor, I always try to demonstrate how they can change—such as
showing them how to revise a paper, showing them how to shoot
a video, or showing them how to identify bugs. Students can then
learn by comparing their original outputs with my demonstrated ex-
amples. As they increase their proficiency, I gradually become more
hands-off to encourage them to achieve their goals independently.
These lessons have given me confidence in my ability to mentor stu-
dents and help them grow as active, accomplished researchers.

Figure 2: A tool to automatically
synthesize personalized hints for
massive programming classrooms.

Novel Tool Development for Programming Courses

Before starting my Ph.D. program, I taught programming (e.g.,
JavaScript, Python, Ruby on Rails, and Node.js) to a small group
of students at the University of Tokyo. Based on this experience, I
learned one vital thing: Hands-on support for programming exercises
is important, but it does not scale. Even with 10-15 students, they
continuously encounter bugs and need assistance, which makes it
difficult to support all of my students in a timely manner.



teaching statement - ryo suzuki 3

Motivated by this experience, I sought to address this problem. I
was fortunate to collaborate with researchers at UC Berkeley to de-
velop and deploy a tool to automatically provide programming hints
for introductory programming courses at UC Berkeley, with over
1,500 students. Based on our insights, we published several peer-
reviewed conference papers. 3 As a course instructor, I will continue 3 A list of publications based on our

novel tool development for program-
ming courses.

• R. Rolim et al. Learning syntactic
program transformations from
examples. In Proceedings of ICSE.
IEEE, 2017;

• A. Head et al. Writing reusable
code feedback at scale with mixed-
initiative program synthesis. In
Proceedingsof L@S. ACM, 2017;

• R. Suzuki et al. Tracediff: Debug-
ging unexpected code behavior
using trace divergences. In Proceed-
ings of VL/HCC. IEEE, 2017;

• R. Suzuki et al. Exploring the design
space of automatically synthesized
hints for introductory programming
assignments. In Proceedings of CHI
EA. ACM, 2017;

• R. Suzuki. Interactive and collab-
orative source code annotation.
In Adjunct Proceedings of ICSE.
IEEE,2015

developing our tool to scale personalized support for programming
courses.

Proposed Courses

Undergraduate Courses:
1. Human-Computer Interaction: Introduces design methodology and
interaction design skills to learn the human-centered design ap-
proach. The course covers techniques for ideating, sketching, proto-
typing, and evaluating interactive software and hardware. The course
also covers the theory and principles of user interface design.

2. Web Programming: Focuses on the programming and prototyping
techniques of web technologies. The course covers a primer on de-
veloping web applications using HTML/CSS, jQuery, React.js, Web-
Socket, and Node.js, then teaches prototyping methods for advanced
applications such as mobile apps, AR/VR, and computer vision.

3. Physical Computing: Focuses on lab-based rapid prototyping and
the iterative design of functional interactive artifacts. The course
covers basic electronics for sensing and actuation, software tools for
designing and programming (Arduino, Eagle), as well as prototyping
tools for fabrication (laser cutting, 3d printing).

Graduate Courses:
1. Virtual and Augmented Reality: Introduces virtual and augmented
reality (VR/AR) with a focus on building spatial computing inter-
faces. Working in teams, students will ideate, prototype, and test user
interfaces. Starting with low-fi prototyping methods, students also
learn how to develop interactive applications with Unity or WebVR.

2. HCI Research Survey: Introduces emerging research topics in HCI,
with a focus on robotic and tangible interfaces. The topics include
tangible interfaces, swarm user interfaces, shape-changing interfaces,
4D printing, inflatable architecture, and haptic interfaces.

3. Human-Robot Interaction: Introduces techniques in human-robot
interaction. Students read and discuss primary literature on HRI, in-
cluding programming by demonstration, human-robot collaboration,
and interaction design for communicating with robots.


	Teaching Experience
	Mentoring Experience
	Novel Tool Development for Programming Courses
	Proposed Courses

