Toward a community enhanced
programming education

Ryo Suzuki

University of Tokyo
Tokyo, Japan
1253852881 @mail.ecc.u-
tokyo.ac.jp

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CHI’'15, April 18-April 23, 2015, Seoul, Korea.

Copyright (© 2015 ACM ISBN/15/04...$15.00.

DOI string from ACM form confirmation

Abstract

As the demand of acquiring programming skills increases,
programming education has been an important topic in
Human-Computer Interaction. In recent years, several
online educational systems have been introduced, and
these systems have reduced barriers for novice learners to
acquire the fundamental skills of programming. These
simple tutorials are beneficial to learn the basics of
programming, however, there is still a huge gap between
acquiring basic knowledge and putting it to practical use.
Therefore, in order to fill this gap, we believe that there
needs to be a community enhanced programming
education, an environment that facilitates users to create
a wide variety of tutorials and improve them with the help
of community. To address this issue, we propose the two
systems: one is a collaborative tutorial creation tool for
open source code hosted on GitHub, and the other one is
a real-time learning environment that encourages students
to interact each other. Our systems aim to facilitate
crowds of developers to create a variety of learning
resources, as a result, encourage learners to acquire more
advanced and practical coding skills. In this paper, we
describes the user interface and its implementation, and
discuss the future direction of programming education.

Author Keywords
Programming Education, Tutorial Creation, Collaborative
Software Development, Integrated Learning Environment

ACM Classification Keywords

D.2.9 [Software Engineering]: Programming
environments.; H.5.2 [Information interfaces and
presentation]: User Interfaces

Introduction

As programming skills increases in demand, programming
education has become one of the most important topics
for a society. In fact, a number of online systems as well
as Massive Open Online Courses (MOOCs) have been
introduces in recent several years, and millions of people

all over the world learn programming with these systemms
everyday. For example, Codecademy ! and Khan Academy

2 provide an interactive learning environment that enables
users to learn the basics of programming within the
browser interactively.

Since most of these educational systems focus on novel
learners, it has been relatively easy to acquire the basics
of programming skills. On the other hand, there is still a
huge gap between acquiring basic knowledge and putting
it to practical use. For example, mastering the basics of
JavaScript has become relatively easy; on the other hand,
building a practical web application with JavaScript is still
difficult to achieve without practical experience. This is
due to the lack of interactivity in online resources which
would allow users to understand the intricacies of more
complex applications of basic coding knowledge.

We believe that one of the key issues in computer science

Thttp://www.codecademy.com/
2https://www.khanacademy.org/computing/

education over next decade would to fill this gap. In order
to address this issue, we propose two systems: one is
Cumiki, a collaborative tutorial creation tool for open
source software code hosted on GitHub, and the other one
is a real-time teaching environment for a computer science
education in classroom. Cumiki aims to facilitate crowds
of developers to create a variety of learning tutorials.
Real-time teaching environment focuses on teachers
rather than learners, and makes it easier for teachers to
improve their tutorials with synchronous feedback from
students. In the following sections, we describes the user
interface and its implementation, and discuss the future
direction of programming education.

zzzzz

@
end |Configuration setting|

Figure 1: The interface of Cumiki. Online demo is available at
http://cumiki.com/demo/.

Tutorial Creation Based on Open Source Code
It is said that the software code of open source project is
a good textbook to learn how to write practical code. On

the other hand, it is hard for beginners to read source
code of large projects. Software documentation is helpful
for programmers to understand how program works,
however, it does not provide the recipe about how to
create this program.

Cumiki provides an interactive user interface that crowds
of developers to create tutorial by annotating the source
code. Cumiki is implemented as a web application on
Amazon EC2 3 and its user interface is implemented in
HTML and JavaScript and runs entirely within the
browser. The server side of Cumiki is implemented in
Ruby. The system is closely integrated with a GitHub
repository and users can annotate source code of any
public repository hosted on GitHub. For extracting
information from a git repository via Ruby, we use rugged
4 Ruby library. As a web-based annotation tool, Cumiki
has the following features.

Get current user data object)t user data object

|
!)
h <> app/controllers/application_controller

</> app/controllers/application, conlrc.vlc
begin class ApplicationController < ActionController::B.
Gcurrent_user ||= User.find(session[:user_id]) protect_from_forgery with: :exception
rescue
session[:user_id] = nil private
redirect_to root_path def current_user
end begin
@current_user ||= User. find(session[:user_i
. . rescue
This code checks whether current user has logged in or not. PRt o &
session[:user_id] has user's session information. IF it redirect_to root_path
does not match with any user data, then redirect to root end
url. end

e L

\

This code cf ‘ged inornot.
session[:{ ‘\arion.\ﬁt
does not m At to root.

url.

3http://aws.amazon.com/ec2/
“http://rubygems.org/gems/rugged/

Figure 2: Traceable link between code and documentation.

Annotation
{ Layer

—

Source Code Documentation

Layer

Figure 3: Collaborative annotation among crowds of
developers.

Interactive and collaborative annotation:

JavaScript-based user interface enables users to create
code-embed tutorial by dragging the mouse. After
annotating the source code, Cumiki automatically
generate a tutorial with code snippets. The user can add
a contextual information such as additional code snippets,
images, videos, and mathematical equations, that makes
it easier to understand the essence of code snippet and
how the code works. Unlike the embedded documentation
generator, we take an approach to separate code and
documentation. Therefore, different developers can
annotate the same source file, as a result, crowds of
developers can share and accumulate their knowledge
about the source code.

Traceability and automated updating:

We implement a one-click link that associates between
source code and documentation. As Figure.3 shows, when
a button is clicked, Cumiki shows the entire code and
highlights a certain piece of code. In addition, our system
is able to automatically update the code snippet by
analyzing how the code has changed with the information
of git versioning system. This feature frees from worry
about updating documentation continuously. The
mechanism behind this feature is that Cumiki extracts
meta data such as line numbers, file name, and commit id
from Git repository, and calculate based on the diff data
of commit history. Moreover, we propose another
approach that separates the layer of annotation from the
source code. Our approach makes it possible for crowds of
developers to annotate collaboratively and accumulate the
knowledge on the source code.

1

2 m Attempt: Pass: @@

3- function problem(N {

;v re::;grﬁrr{?e/’hmup(functwn(ltem){ Expected Your

6 b; 4 Input Output Output Result
H

; [1,2,3] [2,3,4] [2,3,4] v

9) [e,10,11] [1,11,12] [1,11,12]

10 - function convert (D) {

11 return input.pop(); [9,12,4] [10,13,5] [10,13,5]

=
)

Console
> array
[1, 2,
> array.pop()
> array
[1, 2]

>

Figure 4: The user interface of learning enviornment.

Real-time Teaching and Learning Environment

The second system proposed in this paper is an integrated
teaching and learning environment for classroom
computer science education. The problem in classroom
learning is that it is hard for a teacher to grasp students’

progresses adaptively. In addition, the interaction among
students depends on a teacher’s facilitation skills. If the
teacher can get continuous feedback from students and
facilitate the students’ interaction easily, teacher can
provide the better learning experience. Therefore, to
address this problem, we introduce a cloud-based real-tim
educational environment.

The system supports the both learning and teaching
aspects of classroom education. First, the learning
environment consists from lecture part and problem part.
Students learn the fundamental knowledge in the lecture
part, and after that they solve the related coding problem.
The system encourages the interaction among students.
For example, students can see how the best practice or
best performance code among the class. It encourage
students to learn how to improve their code, as well as
motivates them to write good code.

Total Attempt: Total Pass: a

Chart title
Step. 1
Step. 2
Step. 3
Step. 4
Step. §
Step, § —
Step. 7
Step. 8

[025 05 075 1 125 15 17s 2 225 25 275 3 325
Values

fail [l pass
Admin View
Username Pass Code Length Passed At Time Error Count
2 yamayolO15 x 15 - - 14
3 ryosuzuki v 7 - - 5

Figure 5: Real-time information visualization from student
low-level output log for adaptive learning.

Second, our system makes it easier for teachers to
understand how students work on the problem during the
lecture. While students are coding, the system
automatically gathers the low-level output data, including
how students write code, iterate the debugging processes,
handle the error, and interact with the other students.
Administration view displays these information in
real-time and synchronously, thus it enables for teachers
to give a lecture more adaptively, and to improve their
tutorials continuously. For these features, the system
helps users to improve the lecture and tutorial with the
help of community of students.

Related Work

Programming learning is one of the growing fields of
research in HCI and there are a number of proposed
systesm. In related work, Bret Victor envisions the system
for understanding programming with his essay. [12]. Code
Hunt [11] offers educational gaming platform. Online
Python Tutor [4] focuses on a program visualization.
Moreover, there are several related work in MOOCs, for
example, RIMES [6] enables teachers to see how students
solve the problem in MOOC system.

Our research is also related to crowdsourcing in software
engineering. For example, CrowdCode [8] presents
web-based IDE that enables crowds of developers to write,
test, and debug code. For another example, Collabode

[1, 2], browser-based collaborative programming editor,
takes different approach by making real-time peer
programming easier. Stack Overflow ° is one of the
examples of successful crowdsourcing in software

Shttp:/ /stackoverflow.com/

engineering. Prior study shows that over 92% of questions
are answered in a median time of 11 minutes [9].

In the literature of Integrated Development Environment
(IDE), several systems have been proposed to integrate
rich contextual information into IDE. Codelets [10] is an
online code editor that has an interactive helper widget to
assist the user in understanding and integrating examples
on the web. Codetrail [3] and HyperSource [5] embrace an
idea that connects source code and online resources such
as documentation, examples, error descriptions, and code
snippets. In related work of tutorial creation, Community
Enhanced Tutorials [7] introduces a novel architecture that
create and improve tutorials with the help of community.

Future Impact

Acquiring programming skills have become more and more
important not only for software developers but also for
end-user programmers. As the demand of programming
increases, We believe that learning environment needs to
be more adaptive and collaborative, and its tutorials needs
to be more practical and diversified. We envision that the
learning environment combined with crowdsourced
knowledge will enhance the learnability of novice
programmer and accelerate software development. The
future vision of our system is that learning material and
resources are continuously improved with the help of
community of teachers, students as well as developers.
Programming learning environment in the future will be
able to teach a programmer various things, for instance,
how to write more effective code, how to design the
architecture, what is the necessary software library in the
context, and how to use the library. We envision that in
the future, more and more people can learn and use
programming to create innovative software.

References

[1]

[2]

[3]

[4]

[5]

[6]

Goldman, M., Little, G., and Miller, R. C. Collabode:

collaborative coding in the browser. In Proc. of
CHASE’11, ACM (2011), 65-68.

Goldman, M., Little, G., and Miller, R. C. Real-time
collaborative coding in a web ide. In Proc. of
UIST'11, ACM (2011), 155-164.

Goldman, M., and Miller, R. C. Codetrail:
Connecting source code and web resources. Journal
of Visual Languages & Computing 20, 4 (2009),
223-235.

Guo, P. J. Online python tutor: embeddable
web-based program visualization for cs education. In
Proc. of SIGCSE’13, ACM (2013), 579-584.
Hartmann, B., Dhillon, M., and Chan, M. K.
Hypersource: bridging the gap between source and
code-related web sites. In Proc. of CHI'11, ACM
(2011), 2207-2210.

Kim, J., Glassman, E. L., Monroy-Herndndez, A.,
and Morris, M. R. Rimes: Embedding interactive
multimedia exercises in lecture videos. Proc. of

[7]

(8]

[9]

[10]

[11]

[12]

CHI'15 (2015).

Lafreniere, B., Grossman, T., and Fitzmaurice, G.
Community enhanced tutorials: improving tutorials
with multiple demonstrations. In Proc. of CHI'13,
ACM (2013), 1779-1788.

LaToza, T. D., Towne, W. B., Adriano, C. M., and
van der Hoek, A. Microtask programming: Building
software with a crowd. In Proc. of UIST'14, ACM
(2014), 43-54.

Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G.,
and Hartmann, B. Design lessons from the fastest
q&a site in the west. In Proc. of CHI'11, ACM
(2011), 2857-2866.

Oney, S., and Brandt, J. Codelets: linking interactive

documentation and example code in the editor. In
Proc. of CHI'12, ACM (2012), 2697-2706.

Tillmann, N., Bishop, J., Horspool, N., Perelman, D.,
and Xie, T. Code hunt: searching for secret code for
fun. In Proc. of SBST, ACM (2014), 23-26.

Victor, B. Learnable programming. Worrydream.com
(2012).

