Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis

Andrew Head*, Elena Glassman*, Gustavo Soares*, Ryo Suzuki, Lucas Figueredo, Loris D'Antoni, Björn Hartmann

* These three authors contributed equally to the work.

When Writing Feedback on Student Code, Teachers Can Draw on Deep Domain Knowledge

Incorrect Student Code Submissions

```
Submission 1

@@ -1,6 +1,8 @@

def accumulate(combiner, base, n, term):
    def prtii(combiner, n, term):
        if n==1:
            return term(n)
            return combiner(term(n), prtii(combiner, n-1, term))
        return combiner(base, prtii(combiner, n, term))
```

Submission 2 @@ -1,8 +1,10 @@ def accumulate(combiner, base, n, term): value = term(n) def find_value(combiner, base, n, term, value): if n==1: return combiner(base, value) else: return find_value(combiner, base, n-1, term, combiner) return find_value(combiner, base, n, term, value)

```
Submission 3

@@ -1,7 +1,9 @@

def accumulate(combiner, base, n. term):
```

Teacher Comments

What happens when n is zero? Hint: look at lecture 5's slide

While this he

...but it does not scale.

Have you considered what would hannen if combiner was se

In lieu of Teacher-Written Feedback, Autograder Shows Test Cases

Student Submission

Test Case Results

...but there's still a gulf of evaluation.

Course Autograder

Program Synthesis Techniques Can Shrink the Gulf by Automatically Finding and Suggesting Bug Fixes for Students

Student Submission

Test Case Results

Can we combine teachers' deep domain knowledge with program synthesis to **give students better feedback**?

iccios a company of the signature of the

Learning Code Transformations from Pairs of Incorrect and Correct Submissions

Student 1 fixes iterative solution

```
def product(n, term):
    total, k = 1, 1
    while k<=n:
    total = total *k
    total = total *term(k)
    k = k+1
    return total</pre>
```

Student 2 fixes recursive solution

Generalized code transformation

```
def product(n, term):
    if (n==1):
        return 1
- return product(n-1, term) *n
+ return product(n-1, term) *term(n)
```

ations Synthesis

Learning Bug-Fixing Code Transformations

We Scale Up a Little Teacher-Written Feedback by Attaching It to Code Transformations

Incorrect Student Code Submissions

Two Interfaces for Attaching Feedback to Code Transformations

MistakeBrowser: giving feedback on clusters

Learn transformations from Autograder

Collect feedback from teachers

Related Systems: Divide and Conquer [ITS14], AutoStyle [ITS16]

Two Interfaces for Attaching Feedback to **Code Transformations**

FixPropagator: attaching feedback to individual fixes

Learns transformations from and collect feedback from...

Our Program Synthesis Backend

Refazer (/hε.fa.'ze(h)/)
Means "To redo."

Using *Refazer* [ICSE17] as a backend, our systems learn bug-fixing code transformations.

Contributions

- An approach for combining human expertise with program synthesis for delivering reusable, scalable code feedback
- Implementations of two different systems that use our approach: FixPropagator **, MistakeBrowser **
- In-lab studies that suggest that the systems fulfill our goals, also inform teachers about common student bugs

Outline

- Related Work
- Program Synthesis
- Systems
- Evaluation

Related Work

Program Synthesis for Generating Feedback

```
1 def computeDeriv(poly):
                                   The program requires 3 changes:
      deriv = []
      zero = 0
                                    • In the return statement return deriv in line 5, replace deriv by [0].
      if (len(poly) == 1):
          return deriv
                                    • In the comparison expression (poly[expo] == 0) in line 7, change
      for expo in range (0, len(po
                                      (poly[expo] == 0) to False.
          if (poly[expo] == 0):
              zero += 1
                                    • In the expression range(0, len(poly)) in line 6, increment 0 by 1.
          else:
10
             deriv.append(poly[ex
      return deriv
                                                                  (b) Generated Feedback
              (a) Student's solution
```

Figure 2. (a) A student's computeDeriv solution from the 6.00x discussion board and (b) the feedback generated by our tool on this solution.

AutoGrader [PLDI13]

... and beyond CS1 assignments, AutomataTutor [TOCHI15], CodeAssist [FSE16], ...

Related Work

Interfaces for Giving Feedback on Submission Clusters

Divide and Correct [L@S14]

AutoStyle [ITS16]

Program Synthesis

Program synthesis can learn transformations from demonstrations.

Full Name	Last Name
Andrew Head	Head
Elena Glassman	Glassman
Gustavo Soares	Soares
Ryo Sukuzi	Sukuzi

Human demonstrates

Synthesized program propagates

Learning Transformations from Demonstrations

Full Name

Last Name

Т

Sources of demonstrations

- students debugging
- teachers correcting student code

Ryo Sukuzi

Synthesized transformation:

Split string on space, return second substring

Synthesized transformation: Before final return statement, insert AST node "if n==0: return base"

Propagating Transformations

What Bug-Fixing Code Transformations Can Refazer Learn?

Missing base cases...

Function substitutions... and so on...

System Design

Mixed-initiative workflows

Systems 13

Assignment description Return the product of the first n terms in a sequence. n -- a positive integer term -- a function that takes one argument >>> product(3, identity) # 1 * 2 * 3 >>> product(5, identity) # 1 * 2 * 3 * 4 * 5 120 >>> product(3, square) # 1^2 * 2^2 * 3^2 >>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2 14400

Cluster


```
Return the product of the first n terms in a sequence.

n — a positive integer
term — a function that takes one argument

>>> product(3, identity) # 1 * 2 * 3
6
>>> product(5, identity) # 1 * 2 * 3 * 4 * 5
120
>>> product(3, square) # 1^2 * 2^2 * 3^2
36
>>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2
14400
```

Cluster

Submission 3

>>> product(3, identity) # 1 * 2 * 3 >>> product(5, identity) # 1 * 2 * 3 * 4 * 5 >>> product(3, square) # 1^2 * 2^2 * 3^2 >>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2

Cluster

Input

Expected

Actual

Hints

Looks like you're writing a recursive call. What might you be missing to enable recursion?

Reuse previous hints

But Not All Classes Have Submission Histories for Hundreds of Students

Feedback Notes Add Submit feedback

Order by:

- Submission IDs
- Test case results
- Suggested fixes

Suggested fixes

Student Submission

Test results: All tests succeeded

				Output
lambda x: x),	\rightarrow	6	6	
lambda x: x),	\rightarrow	120	120	
lambda x: x * x),	\rightarrow	36	36	
lambda x: x * x),	\rightarrow	14400	14400	
	lambda x: x * x),	lambda x: x), \rightarrow lambda x: x * x), \rightarrow	lambda x: x), \rightarrow 120 lambda x: x * x), \rightarrow 36	lambda x: x), \rightarrow 120 120 lambda x: x * x), \rightarrow 36 36

Print output (test case 1)

[This test case produced no console output.]

Back	Next

Feedback

New Student Submission with Same Bug

Suggested Fix

Submissions

∅ = feedback given
 ☆ = passed all test cases
 ♀ = fix suggested

Submission 146 Submission 148
Submission 149
Submission 150
Submission 151
Submission 152
Submission 153
Submission 154
Submission 155
Submission 156
Submission 157
Submission 157

Order by:

- Submission IDs
- Test case results
- Suggested fixes

Suggested fixes

Submission 24
Submission 25

Student Submission

You can edit this code. Show original • Edit Show diff

1 def product(n, term):
2 if n == 0:
 return 1
4 if n != 0:
 return term(n) * product(n - 1, term)

Run tests again

Test results: All tests succeeded

Input		Result	Expected	Output
(3, lambda x: x),	\rightarrow	6	6	
(5, lambda x: x),	\rightarrow	120	120	
(3, lambda x: x * x),	\rightarrow	36	36	
(5, lambda x: x * x),	\rightarrow	14400	14400	
	(3, lambda x: x), (5, lambda x: x), (3, lambda x: x * x),	(3, lambda x: x), \rightarrow (5, lambda x: x), \rightarrow (3, lambda x: x * x), \rightarrow	(3, lambda x: x), \rightarrow 6 (5, lambda x: x), \rightarrow 120 (3, lambda x: x * x), \rightarrow 36	(3, lambda x: x), \rightarrow 6 6 (5, lambda x: x), \rightarrow 120 120 (3, lambda x: x * x), \rightarrow 36 36

Print output (test case 1)

[This test case produced no console output.]

Back Next

Feedback

Student error detected.

This wrong answer can be "fixed" with the edits for submission 281.

This is the fix:

Another student with this same problem has already been given feedback. Do you want to use the feedback for them here?

dback ~
Add

A Study of the Systems

Participants: Current and former teaching staff from CS1

MistakeBrowser (N = 9) FixPropagator (N = 8)

Interface Walkthrough (5 mins.)

Main Task (30 mins.): Giving feedback on student submissions Measurements: Feedback, Manual corrections, Response to feedback recommendations (accepted, changed, rejected), Between-task surveys...

Qualitative Feedback: Survey and Post-interview

1. Can a **few manual corrections fix many** submissions?

1. Can a few manual corrections fix many submissions?

FixPropagator propagates fixes from dozens of corrections to hundreds of submissions.

1. Can a few manual corrections fix many submissions?

FixPropagator propagates fixes from dozens of corrections to hundreds of submissions.

Median # submissions given feedback by...

• Fixes were propagated within minutes $(median = 2m20s, \sigma = 7m34s \text{ for each correction}).$

2. How often is a teacher's **feedback relevant when it is matched** to other students' submission?

2. How often is a teacher's feedback relevant when it is matched to other students' submission?

Feedback propagated with FixPropagator was correct a majority of the time, but not always.

Teachers reused feedback a median of 20 times, modifying it a median of 6 times (30%).

Generalizable Comment

"Check if you have the product of the correct number of terms."

Non-Generalizable Comment

"Your starting value of z should be a function, not an int."

MistakeBrowser created conceptually consistent clusters of student bugs.

MistakeBrowser created conceptually consistent clusters of student bugs.

Do these submissions share the same misconception?

Responses for N = 11 clusters

Evaluation Questions

1. Can a few manual corrections fix many submissions?

With a median of 10 corrections, FixPropagator suggested fixes for a median of 201 submissions.

2. How often is a teacher's **feedback relevant** when it is matched to another student submission?

Matched feedback was relevant ~75% of the time.

Clusters Helped Teachers Give Feedback

Participants reported that the interfaces "gave me insight into student mistakes and misconceptions" $(\mu = 6.2, \sigma = 0.44, \text{ range} = 1-7).$

Seeing all of the similar instances of the same (or nearly the same) misconception was very useful, because it suggested ways to address common issues shared by many students.

- Participant 3, about MistakeBrowser

Time (minutes)

Time (minutes)

Time (minutes)

Time (minutes)

```
This wrong answer can be "fixed" with the edits for submission 24.
This is the fix:

    Show original
    Edit
    Show diff

                                                         You can edit this code.
           @@ -1,6 +1,5 @@
                                                           1 def product(n, term):
          1 def product(n, term):
                                                                  total, k = 0, 1
                total, k = 0, 1
                                                                  while k <= n:
                total, k = 1, 1
                                                                       total, k = total * term(k), k + 1
                while k <= n:
                                                                  return total
                    total, k = total * term(k)
                return total
                                                                                           Run tests again
          ← Apply this fix to the student's code
                                    "Propagating" a fix
```

```
This wrong answer can be "fixed" with the edits for submission 24.
This is the fix:

    Show original
    Edit
    Show diff

                                                              You can edit this code.
            @@ -1,6 +1,5 @@
                                                               1 def product(n, term):
           1 def product(n, term):
                                                                      total, k = 0, 1
while k <= n:
total, k = total * term(k), k + 1

"Modifying" a fix
return total
                 total, k = 0, 1
                 total, k = 1, 1
                 while k <= n:
                      total, k = total * term(k)
                  return total
                                                                                                  Run tests again
           ← Apply this fix to the student's code
                                       "Propagating" a fix
```

Fixes that FixPropagator learned were typically correct when applied to other submissions.

Teachers applied a median of 20 fixes, and only modified those fixes a median of 3 times.

Feedback propagated with FixPropagator was correct a majority of the time, but not always.

Another student with this same problem has already been given feedback. Do you want to use the feedback for them here?

Feedback propagated with FixPropagator was correct a majority of the time, but not always.

Another student with this same problem has already been given feedback. Do you want to use the feedback for them here?

Feedback propagated with FixPropagator was correct a majority of the time, but not always.

Notes

Add

Any sequence of products that includes a zero will X

Submit feedl ack

"Modifying" feedback

Another student with this same problem has already been given

Teachers provided one piece of feedback on clusters that were mostly internally consistent.

FixPropagator propagates fixes from dozens of manual corrections to dozens of solutions

Limitations

- The impact of teacher feedback on student learning outcomes has not been evaluated
- Code transformations were created that fix submissions one or two bugs away from correct

Conclusion

We present an approach for combining human expertise with program synthesis for delivering reusable, scalable code feedback.

And two systems implementing this approach:

Conclusion

We present an approach for combining human expertise with program synthesis for delivering reusable, scalable code feedback.

And two systems implementing this approach:

Questions?