LiftTiles: Modular and Reconfigurable Room-scale Shape Displays through Retractable Inflatable Actuators

Ryo Suzuki1, Ryosuke Nakayama2, Dan Liu1, Yasuaki Kakehi3, Mark D. Gross1, Daniel Leithinger1
1 University of Colorado Boulder, 2 Keio University, 3 The University of Tokyo
{ryo.suzuki, dali2731, mdgross, daniel.leithinger}@colorado.edu, ryosk611@sfc.keio.ac.jp, kakehi@iii.u-tokyo.ac.jp

ABSTRACT
This paper introduces LiftTiles, a modular and reconfigurable room-scale shape display. LiftTiles consist of an array of retractable and inflatable actuator that is compact (e.g., 15cm tall) and light (e.g., 1.8kg), while extending up to 1.5m to allow for large-scale shape transformation. Inflatable actuation also provides a robust structure that can support heavy objects (e.g., 10 kg weight). This paper describes the design and implementation of LiftTiles and explores the application space for reconfigurable room-scale shape displays.

CCS Concepts
• Human-centered computing → Human computer interaction (HCI);

Author Keywords
shape displays, inflatables, pneumatic actuation

INTRODUCTION
Shape display is a promising approach to general-purpose shape-changing interfaces [1]. However, most of the existing pin-based shape displays focus on interactions at the scale of a human hand [4, 3, 5, 6, 7, 8, 10] because of the following three technical challenges when trying to create a larger-size shape display: 1) scalability: common electromechanical linear actuators are difficult to scale to larger sizes due to cost and fabrication complexity. 2) robustness: in a room-scale shape display, each actuator must support heavy objects like a human body, thus it must be robust compared to smaller actuators. 3) deployability: existing shape-changing systems require substantial space for the mechanical actuators, which introduces difficulties in installation.

To overcome these challenges, this paper introduces LiftTiles, a room-scale shape display enabled by an array of retractable and inflatable actuators. Each actuator is compact (e.g., 15cm tall), light weight (e.g., 1.8kg), low cost (e.g., 8 USD), and strong (e.g., withstand more than 10 kg weight). It can extend up to 1.5m that allows for large-scale shape transformation. Each inflatable actuator is fabricated with a plastic tube and constant force springs. It extends when inflated and retracts with the force of its spring when deflated. By controlling the volume of internal air, the system can control the height of the actuator. Compared to similar existing reel-based pneumatic actuators [2], our proposed design utilizes constant force springs to allow for greater stability, simplified fabrication, and stronger retraction force. This enables a large actuator that expands from 15cm to 150cm, at a footprint of 30cm x 30cm.

LIFTTILES: SYSTEM DESIGN
Each unit of LiftTiles consists of an inflatable plastic tube (0.15mm thickness vinyl, 20 cm in diameter when inflated) and two constant force springs (Dongguan Yongsheng Metal, 1.5 m in length, 2 cm in width, and 0.8 kgf load). One end (flat side) of the spring is fixed to the bottom plate and the other end (rolled side) is fixed to the top end of the tube (Figure 4). Laser-cut base plate (22 cm x 22 cm) has two holes for air
supply and release respectively. The supply hole is directly connected to a solenoid valve (Ebowan Plastic Solenoid Valve DC 12V), which has 15 mm diameter. The air release hole has a T-shaped silicon tap. The silicon tap can open and close the release valve with a 3D printed rack and pinion gear mounted on a servo motor (TowerPro SG90). We mount a telescopic enclosure (30 cm x 30 cm, 18 cm in height) made of corrugated plastic sheets to enable the user to sit or step on it.

Our actuator design is inspired by the prior reel-based pneumatic actuator [2]. However, during our prototyping process, we realized that the force of the spiral torsion springs used in [2] was too weak to retract a large sized pneumatic tube. In addition, the retractable force of the spiral springs is not constant and changes according to the length of the inflatable tube (e.g., weak spring force at shorter extension). Our design contributes to overcoming these challenges for scalable, reliable, and easy-to-fabricate actuation methods.

Each individual actuator is modular and can be connected with the neighboring actuators. At the end of the solenoid air intake valve of each actuator, it is connected to a T-shaped plumbing joint. Adjacent actuators are pneumatically connected through a silicon tube between the T-shape joints. This way, an array of actuators is connected to a shared pressurized line. Multiple air compressors (Yasunaga Air Pump, AP-30P) pressurize the shared line. Each air pump provides up to 12.0kPa of pressure and supplies 30L of air volume per minute.

In our prototype, the cost of each actuator is less than 8 USD, including the solenoid valve (3 USD), contact force springs (0.5 USD), the servo motor (2 USD), and other material cost. In total, we fabricated 25 units for our prototype.

APPLICATIONS AND FUTURE WORK

By leveraging LiftTiles prototype, we explore possible interactions with reconfigurable room-scale shape displays and propose three high-level interaction spaces: 1) adaptation to the user’s needs and situation, 2) display of information or data to the user, and 3) haptics to provide physical feedback synchronized with visual information. For future work, we are interested in exploring other application scenarios, such as actuating large existing objects leveraging the shape displays [9, 11, 14] or adding mobility in each unit to allow an autonomous and distributed shape display [12, 13].

In a public working space, LiftTiles can create a temporal meeting space by separating the space.
ACKNOWLEDGEMENTS
We thank Shohei Takei for helpful suggestions. This research was supported by the JST ERATO Grant Number JPMJER1501 and the Nakajima Foundation.

REFERENCES


