
SHAPE-IT: Exploring Text-to-Shape-Display for Generative
Shape-Changing Behaviors with LLMs

Wanli Qian∗
University of Chicago

United States
wanliqian965@gmail.com

Chenfeng Gao∗
University of Chicago

United States
jessegao7@uchicago.edu

Anup Sathya
University of Chicago

United States
anups@uchicago.edu

Ryo Suzuki
University of Colorado Boulder

Boulder
USA

University of Calgary
Canada

ryo.suzuki@ucalgary.ca

Ken Nakagaki
University of Chicago

United States
knakagaki@uchicago.edu

heartPositionX:

heartPosition Y:

heartScale:

heartHeight:

pulseFrequency:

maxScaleIncrease:

12.00

12.00

type in what you want to create with shape display...

right with two buttons.

create a heart shape with a pulsing cA) =

animation, and move the shape left and aa

C:
e Created a heart shape with 2.5D

effect

e Created buttons to move the

heart shape left and right

around|a large circle}?

Create an|ocean wave”.

“Add

Can you draw a draw circling

Figure 1: SHAPE-IT lets users to input text to author shape displays. A: SHAPE-IT’s GUI. B: a user typing prompts. C: example
outcome from our study participant for movement, D: another example for interaction.

Abstract
This paper introduces text-to-shape-display, a novel approach
to generating dynamic shape changes in pin-based shape displays
through natural language commands. By leveraging large language
models (LLMs) and AI-chaining, our approach allows users to au-
thor shape-changing behaviors on demand through text prompts

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676348

without programming. We describe the foundational aspects neces-
sary for such a system, including the identification of key generative
elements (primitive, animation, and interaction) and design require-
ments to enhance user interaction, based on formative exploration
and iterative design processes. Based on these insights, we develop
SHAPE-IT, an LLM-based authoring tool for a 24 x 24 shape display,
which translates the user’s textual command into executable code
and allows for quick exploration through a web-based control in-
terface. We evaluate the effectiveness of SHAPE-IT in two ways: 1)
performance evaluation and 2) user evaluation (N= 10). The study
conclusions highlight the ability to facilitate rapid ideation of a wide
range of shape-changing behaviors with AI. However, the findings
also expose accuracy-related challenges and limitations, prompting
further exploration into refining the framework for leveraging AI
to better suit the unique requirements of shape-changing systems.

CCS Concepts
• Human-centered computing→ Interaction devices.

https://orcid.org/0000-0002-1649-5664
https://orcid.org/0000-0002-0601-2921
https://orcid.org/0000-0002-9793-9625
https://orcid.org/0000-0003-3294-9555
https://orcid.org/0000-0002-1351-6976
https://doi.org/10.1145/3654777.3676348

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

Keywords
Shape Display, Text-based Authoring, LLMs, Code-Generation

ACM Reference Format:
Wanli Qian, Chenfeng Gao, Anup Sathya, Ryo Suzuki, and Ken Naka-
gaki. 2024. SHAPE-IT: Exploring Text-to-Shape-Display for Generative
Shape-Changing Behaviors with LLMs. In The 37th Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’24), October 13–
16, 2024, Pittsburgh, PA, USA. ACM, New York, NY, USA, 29 pages. https:
//doi.org/10.1145/3654777.3676348

1 Introduction
What if our physical environment could dynamically transform
through natural language commands? Imagine a shape-changing ta-
ble that brings a pen or generates a bookstand by simply asking for
it or a floor that transforms itself into a chair or furniture just by say-
ing so. While such ideas have been partially illustrated in research
visions [21, 23] or demonstrations [63] to create shape changes
based on user intent, most of these dynamic shape configurations
currently rely on pre-programmed behaviors. How can we create
these dynamic shape changes on-demand without programming?

As a first step towards this vision, this paper explores text-
to-shape-display, the concept of generating dynamic shapes for
pin-based shape displays through natural language commands by
leveraging large language models (LLMs). The underlying idea is
to employ LLMs to generate executable code that controls each pin
of the shape display, allowing users to quickly generate a dynamic
shape by simply asking for it. Although the underlying concept
is simple, several important questions still remain, such as •what
common elements text-to-shape-display systems need to gener-
ate, •what limitations exist when applying basic LLM-based code
generation to program shape displays, and •how to design such
a system from a user-centered perspective. To address these ques-
tions, this paper makes three key contributions: 1) identification of
three key generative elements that emerged from formative explo-
ration, 2) system requirements and design guidelines identified via
an iterative design process, and 3) a system design and evaluation
of a proof-of-concept prototype.

First, we identify Primitive , Animation , and Interaction as the
key elements for the design of text-to-shape-displays. To identify
this, we conducted a formative exploration in which we collected
49 representative shape display video clips and recruited 100 crowd-
sourced participants to investigate how end-users might command
the generation of various shape display outputs. Our findings re-
veal that typical shape display outputs described by users consist of
three main components: 1) Primitive which defines base geometry,
2) Animation which describes the movement of primitive objects,
and 3) Interaction which specifies how user inputs influence primi-
tive objects. Given this result, we propose that text-to-shape-display
systems should focus on generating these elements to support a
broad spectrum of shape-changing behaviors.

Second, we identified several design requirements for text-to-
shape display, including support for iterative refinement through
step-by-step authoring, transparency regarding non-deterministic
LLM results, and support for real-time exploration via parame-
ter manipulation. These guidelines were established through the
development and evaluation of an early prototype, in which we

developed a simple LLM-based shape display authoring system,
and then conducted a pilot study with ten participants.

Based on these insights, we developed SHAPE-IT, the first text-to-
shape-display system that can control a 24 x 24 pin-based shape dis-
play based on text instructions. Our system leverages AI-chaining,
which connects multiple AI models or tasks in sequence to perform
complex operations by leveraging the strengths of each compo-
nent.. First, the prompt-helper module interprets user input and
translates it into three key components: Primitive , Animation ,
and Interaction . Second, the code-generating modules take the re-
sult of these three decomposed inputs and then generate executable
code for each element. This AI-chaining architecture improves the
reliability of code generation through explicit interpretation of user
intents. In addition, our frontend interface with a conversational UI
and shape display simulator allows users to quickly review andmod-
ify the shape display behaviors through parameter manipulation
or iterative command execution.

We evaluate our system through two methods: 1) performance
evaluation and 2) user evaluation. First, we measure the perfor-
mance of our system, which results in 82% compilation success rate,
based on 50 random samples gathered from our crowdsourcing
study. Second, we invited 10 participants to attend a user study,
which included a series of design tasks using our system. We col-
lected qualitative data with semi-structured interviews. Partici-
pants’ feedback validates the usability and capability of our system.
Their creative shape-changing interaction design indicates that
SHAPE-IT could facilitate rapid ideation of tangible interaction.
We also uncovered the limitations of our system, learned the need
for the enhancement of human-AI collaboration in tangible author-
ing, and the generation of interpretable results. Based on these
insights, we discuss how future research could address these issues
to broaden this concept to broader shape-changing interfaces.

Finally, our contributions include:

• Requirements, and guidelines for designing text-to-shape
displays through formative exploration and iterative devel-
opment.

• SHAPE-IT1, the first LLM-based authoring tool for shape
displays uses AI-Chaining, which connects multiple AI mod-
els or tasks in sequence to perform complex operations by
leveraging the strengths of each component, enabling the
authoring of dynamic shapes, motions, and interactions.

• Evaluation results and insights highlighting the benefits and
challenges of integrating LLMs with shape displays.

2 Related Work
2.1 Authoring and control methods for

pin-based Shape Display
To allow lay users to flexibly and intuitively configure shapes, mo-
tion, and interaction on pin-based shape displays, researchers have
explored various software and hardware implementations aimed
at empowering users to design and configure tangible shapes and
motions on pin-based shape displays. These approaches include
pre-planning GUI [14, 26, 65], gestural interactions [6, 16, 16, 22, 34],

1Our project code: https://github.com/AxLab-UofC/SHAPE-IT

https://doi.org/10.1145/3654777.3676348
https://doi.org/10.1145/3654777.3676348
https://github.com/AxLab-UofC/SHAPE-IT

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

and tangible instruction based on touch or ‘scanning’ physical ob-
jects [34, 42, 43]. SHAPE-IT enhances the process of designing for
pin-based shape displays by enabling users to input instructions in
natural language, either by typing or speaking. Unlike traditional
methods that are confined to predetermined options, our system uses
Large Language Models (LLMs) to convert these instructions into
code, thereby controlling the display’s behavior. This innovation
significantly broadens the scope of possible behaviors, moving be-
yond fixed options and allowing for limitless creativity in shaping
display outcomes.

2.2 Text Authoring and Generative AI in HCI
Research in using text input to control and author computing sys-
tems is a fundamental research realm in HCI, and it is now part of
our everyday computing interface, for example, voice assistants [50].
Natural language input is one of the most accessible methods for
user interaction, and it has great potential for users to achieve
complex task goals without needing to remember specific UI ele-
ments or buttons [32], or even programming [5]. Text input has
been employed in various applications, often combined with other
modalities, such as image editing [32] general point-and-speech UI
interaction [7], and data visualization [56]. The accessibility and
expressiveness of natural language make it a powerful tool for users
to communicate their intentions and achieve desired outcomes in
interactive systems [49], as well as to create and modify interactive
Mixed Reality experiences in real-time [15].

The recent mind-blowing advancements in generative AI using
text inputs to generate content have opened up new possibilities
for user interaction systems. These tools, which include text-based
(ChaptGPT [47], Claude[3]), image-based (DALL-E [46]), and even
video-based models (Sora [9]) are becoming publically available
and used world-wide.

Following this trend, in the domain of HCI, LLM-based AI gen-
eration systems actively being investigated to design novel user
interaction harnessing the capability of translating natural language
descriptions into generative outputs, including data visualization
authoring [56], interactive diagrams [27], UI prototyping [33], writ-
ing assistance [67], and end-user programming [61], creative cod-
ing [2], and code generation [28, 62]. To our knowledge, though
employing LLM to generate 3D digital models has been explored in
the graphics community[38, 41, 45], translating text into outputs
for physical shape-changing devices has not been explored. We find
great research opportunities and potential to bridge the realms of
human-generative-AI interaction and shape-changing interfaces to
create a new thread of research that turns natural language into
tangible, dynamic, and responsive shapes.

Our work advances LLM-based code generation by facilitating
dynamic script creation for shape-altering displays and addressing
challenges in Generative AI systems. We tackle the discrepancy
between user text instructions and the formulation of effective
prompts for code generation. As highlighted by “Why Johnny Can’t
Prompt” [66], not all users can craft prompts that elicit the desired
response from AI systems. Further, Khalid, et al. [40] suggest that
structured prompts, akin to pseudo-code, enhance code generation
accuracy—a principle applicable to text-to-shape display systems
requiring precise interpretation of user intent. Despite the growing

popularity of AI in code generation, achieving flawless outcomes
remains elusive [17], underscoring the need to minimize errors
in such systems. Drawing inspiration from the concept of LLM-
Chaining and its potential to improve complex systems [64], we
introduce an architecture that preprocesses user commands via
LLM-chaining. This approach converts user inputs into structured
code instructions based on user intent, thereby enhancing the ac-
curacy of subsequent code generation.

3 Formative Exploration
This section describes our formative exploration aimed at informing
the design of text-to-shape-display systems. To understand how
users construct commands for creating shape-changing behaviors,
we conducted a crowdsourced elicitation study. First, we compiled
representative video clips of shape displays (N = 49) from previ-
ous research papers (N = 21). For each video collected, we asked
crowdsourced participants (N = 100) to provide a prompt that could
generate the observed motion. By analyzing these user-generated
commands (N = 314), we identified common language patterns and
key elements of shape-changing behaviors, which will guide the
design of our system.

3.1 Method
Dataset. For the elicitation study, we collected 49 video clips that
represent various behaviors of shape displays. The collection pro-
cess was conducted in two steps: 1) searching for and collecting
relevant research papers, and 2) extracting diverse interactions
from video demonstrations. First, we gathered existing research
on shape displays by conducting a manual keyword search for
“pin-based shape display” in the ACM Digital Library, from which
we curated those that primarily focused on tangible information
displays or shape-changing interactions, excluding works centered
on themes such as haptics and actuation techniques. After the
selection process (see Appendix A), we compiled a set of 21 pa-
pers [13, 16, 18, 19, 22, 24–26, 34–36, 42–44, 52, 54, 55, 57–59, 63, 65]
for our video materials and we extracted short video clips from
these research videos. After assembling this pool of clips, we ap-
plied several criteria to further filter the data (see Appendix A.2).
These criteria were designed to ensure the essential aspects of the
shape-changing behaviors are captured and minimize the presence
of external information that could potentially bias or influence
participants’ decisions. This process resulted in a final set of 49 rep-
resentative video clips2, each with an average length of 4.8 seconds.

Participants. Participants for this study were recruited through
Prolific, an online platform that provides academic researchers with
access to a diverse pool of participants. During recruitment, we
did not apply strict demographic criteria or target specific user
groups, with the exception of requiring English as the primary
language. This requirement ensured that participants could provide
detailed text inputs in English, which was essential for our study.
We recruited a total of 100 participants, compensating them at an
average rate of $12 per hour, which amounted to an average of
$1.60 per participant. For detailed procedures, see Appendix A.2.

2A link to the playlist can be found: study materials

https://www.youtube.com/playlist?list=PLjuhl7c_2gWjDHpYBVObHveGpM7NpMUOj

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

EXAMPLE USER-GENERATED PROMPTS BASED ON PRIOR PIN-BASED SHAPE DISPLAY RESEARCH

PRIMITIVE:

INTERACTION:

and

Basic Shapes, Complex Shapes, and Patterns that constitutes target shape display behavior

that can be applied to the primitive to preform dynamic shape-change

Hitt h HH
Hii ’

Create a hollow circle in the
center that protrudes out
from the rest of the area and
remains protruding.

sefeete

SHH HTT:

raise pins in the middle to
create a hollow light bulb

shape ,
again to

a filled light bulb shape

Create separate stationary
rectangles with a smaller
rectangle inside the larger
one, and on the outside of
each rectangle is an
undulating wave

Create a large square ona
table that creates a tidal
wave effect from a cell
phone placed in the upper
right-hand corner

00
07

0
OO
'@
di
d

0
0
0
0

of

2
0

0
0
0
0
0
0
0
5

0
0
0
0
0
0
0
.

004

0
0
0
0
0
0
0
0
0
6

0
0
0
0
0
0
0
 00

Q
@
0
0
.
0
0
0
 0

6
0
0
0
0
0
0
6
 04

0.
0.
0,
00
00
0.
0%

06
16
.6

0
0
0
0

6
0
0
.
9
9
9

:
o
y

make a heart
with a pop

background

shape

Create multiple shapes
resembling a ramp that

Create a

of the letters TEI in 2D to

Create a
of the letters

"TE", making the letters take
up the entire board and

Trigger, Mapping and Control! that users expect to interact with the primitive to achieve the desired shape-changing behaviors

Create a random
assortment of pin heights
ona plane and
wavelike pattern

.

Generate a triangle shape
pointing in the opposite
direction as the ball. It should
continue to follow the
opposite direction of the

ball as the ball moves

create a circle with a hole

in the center that

Tap the bottom left corner
and then the square wil! get
bigger

e-
~~

Some of the pieces ;
around the inner rectangle.
They form a ripple effect.

Pieces toward the outer
edge as well then they
all

meat
an) oe

Have sticks

For this pattern, | want to
look like circular wave that
expands outwards. With
this pattern, | want it to

raise segments to create a
hollow semi-spherical
shape that surrounds
objects placed on the
surface.

When you press your hand
on the pieces, make them
form a ripple effect, moving
outward away from where
you pressed

make a seven block tall
wall oriented left to right,
and have it

. If it gets pushed
down at some point by a
hand, then keep that
depression and move it to
the left and

Create a reactive square
that moves when hovered

over

Create a wave-like
animation where the pins
are staggered in a way that

Create a large box that
follows the top of the
moving hand gesture

create a minimalistic

abstract city that moves up
and down with the wave of

a view/user

Figure 2: Primitive, Animation, and Interaction: Fundamental shapes, motion behaviors, and user-controlled triggers for
text-to-shape-display approach learned from prior pin-based shape display research.

Task. We asked each participant to generate a prompt for each of
four video clips. The task was divided into two parts: First, during
the introduction and training phase, participants were presented
with a video (a heart shape scaling up andmoving from the top right
to the middle in the TRANSFORM [63] video) and two example
prompts to ensure they understood that the task was to provide
instructions rather than mere descriptions. Second, in the main
task, participants viewed four randomly selected video clips from
the curated 49 videos. They were then asked to type their own
instructions for each clip. From 100 participants, a total of 314
valid3 user instructions were collected from 400 raw data points.

3prompts like “I don’t know how to describe” or it doesn’t focus on shape-changing
effect are treated as invalid.

Coding Analysis. Given the 314 user-generated prompts, two of
the authors conducted a thorough thematic analysis [8] to iden-
tify commonly used language patterns and recurring themes. The
analysis began with an initial coding phase, where each author
independently examined a subset of the prompts and assigned
preliminary codes to capture the salient features and concepts ex-
pressed by the users. After several rounds of analysis, refinement,
and discussion within the research team, we reached a consensus
on the final categorization scheme, which consisted of three main
generative elements: primitive, animation, and interaction. Fig-
ure 2 illustrates a set of example videos, associated user-generated
prompts, and color-coding of these key elements. In the follow-
ing sections, we describe each element in detail. These identified
elements inform the design of our system, detailed in Section 5.

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

3.2 Primitive
We observed that participants often referenced a specific ’object’
on the shape display to describe shape-changing effects. We define
Primitive as the basic geometry of that constitutes target shape
display behavior, which can be either basic shapes, geometries, or
movement patterns. These primitives exclude added animations
or interactions, considering them accessory features. Primitives
may include motion, such as a “wave” pattern. Categories of prim-
itives identified are Basic Shapes (geometric shapes like circles,
squares, and triangles), Complex Shapes (more detailed forms like
letters, icons, and landscapes), and Patterns or Basic Layouts
(specified arrangements or effects, often described when precise
shapes cannot be articulated). These serve as foundational elements
for constructing more intricate forms and behaviors.

3.3 Animation
Animation elements are defined as enhancements to primitives,
altering geometry parameters to achieve dynamic and continuous
motion. These elements introduce various motion behaviors to
primitives, including basic motion (e.g., translations like rising,
falling, and pulsating movements), transformations (shape or
state changes such as morphing and revealing), and speed and
timing (adjustments from fast to slow). Additionally, Repetition
and Speed are crucial, with users frequently requesting repetitive
or looping animations, dictating the rhythm and periodicity of the
motion. These animation features, applied atop primitives, facilitate
dynamic shape transformations.

3.4 Interaction
The Interaction element focuses on how users expect to interact
with and control the primitive shape or pattern to achieve the
desired shape-changing behaviors. Such as trigger: Users specify
various triggers that initiate or influence the shape-changing effects,
including physical touch, pressing on the shape displays, hovering
above the shape displays;mapping and control: Users describe
different mapping mechanisms for continuously interacting with
the shapes. This includes direct and indirect manipulation and
parameterization. These interaction control techniques allow users
to manipulate and customize the shape-changing effects by being
applied to primitives.

4 Early Prototype and Pilot Study
Our goal is to identify the challenges and potential benefits of
an LLM-based text-to-shape-display system. To understand the
user experience of such a system, we developed an initial working
prototype to conduct a pilot study, based on Buchenau’s experience
prototyping protocol [10]. This helps us gain insights from the
user’s firsthand experiences by allowing them to directly engage
with functional systems.

4.1 Early Prototype
Our initial prototype consisted of two main components: 1) a fron-
tend shape display simulator built with Unity, and 2) a backend
LLM-based code generator built with Python. The backend code
generator leverages the GPT-4 API to translate users’ textual in-
structions into executable Unity code. To ensure the generation of

executable code, we employ few-shot prompting [51] techniques4.
For example, each prompt provides a collection of example com-
mands, such as “create a heart shape” or “Created a ball shape and
a button to control toggling appear and disappear of the ball shape”,
along with their corresponding author-prepared Unity programs
that are designed to control the height of each pin in a 30 x 30 shape
display simulator (see Appendix B for more prompt details). The
frontend interface features simple and basic UI elements, including
a text input box, an area for displaying AI responses, and a shape
display simulator. After receiving a response from GPT-4 API, the
backend system sends the output to the frontend interface with
the JSON format, so that the system can run the GPT-generated
program to animate the 30 x 30 shape display simulator with a
single input text box.

“create an explosion
controlled by a button”

“create a ball, cone,
cylinder, cube

A B C

Figure 3: Early UI prototype (A) for creating basic geometries
(B), and interaction (C).

4.2 Pilot Study
We conducted a pilot study with 10 participants (6 males, 4 fe-
males), including 4 experts in programming, 5 in design, and 1 in
product management, with their ages ranging from 22 to 33 (av-
erage age 26). First, participants were given a brief introduction
and a walkthrough of the system. They were then tasked with
performing a free-form ideation activity (40 minutes) to develop
their desired concepts using our system, followed by a short in-
terview (20 minutes) to discuss the system’s usability and gather
suggestions. Throughout the study, we observed the participants’
interactions and collected feedback. Each session lasted approxi-
mately 60 minutes, and each participant was compensated $15 for
their participation.

4.3 Findings in Challenges and Informing
Feature Improvments

Overall, participants recognized the potential of the text-to-shape-
display approach, as all of them could construct certain shape-
display behaviors using texts easily. However, we also found multi-
ple key problems that have to be resolved to build text-to-shape-
display system, that is easy to use, employ and iterate repeatedly.
We elaborate on them in five key insights below, which we incor-
porated for SHAPE-IT implementation, detailed in section 5.
•Enabling Micro-Adjustments: The only option for users to

create or modify the shape display behavior was prompting with the
4Few-shot prompting in the context of Large Language Models (LLMs) involves pro-
viding the model with a small set of examples (typically one to five) to guide it on a
specific task. These examples, comprising input-output pairs, act as a mini-dataset for
the model to adapt its responses accordingly.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

pilot frontend UI. Even very simple minor adjustments (e.g., tuning
the height of a rectangle or controlling the wave motion speed)
required re-prompting, which required typing a follow-up prompt
and waiting approximately 40-50 seconds for GPT agent processing,
only to get another result which may still not satisfy user’s intent.
To address this issue of difficulty of quick micro-adjustments, we
propose to make parameter generation, and adjustments via
GUI as one of the required features for the SHAPE-IT system. In
such a system the LLM agents can generate a set of parameters that
can be tuned and adjusted by the users to for quick modifications.
•AccessingConversationHistory: Participants also expressed

frustration with the inability to review and compare and revert to
previously generated results, especially when the newly created ones
were worse than before. This motivated us to implement a feature
of conversation history that allows users not only to view the
prior prompts and generated codes, but also to revert to any of the
history results, and re-prompt based on that prior result.
•Transparency of AI generation: During the study, partici-

pants expressed concerns that the process between user input and
AI output appeared as a “black box,” leading to feelings of distrust
and frustration, particularly when the system failed to meet their
expectations. This feedback highlights the essential need to develop
an AI system that transparently communicates its reasoning
process, provides feedback, and reports errors to users. Such im-
provements are crucial for fostering a more effective human-AI
interaction by enhancing transparency throughout the generation
process.
•Token Economy5 and Context management: the pilot sys-

tem uses a naive context management strategy that compounds
user inputs and code responses in LLM conversations in each user
interaction to enable context-based editing which leads to a qua-
dratic increase in input token costs during the conversation. Given
each iteration the context is compounded with a code result which
has massive content, this indicates poor token economy and ineff-
cient context preservation strategy. This issue is worsened by feed-
ing multiple few-shot prompting examples to the system, further
inflating input length and model context capacity after 3-5 interac-
tion rounds for participants during the study. Hence, in SHAPE-IT
framework, we utilize Retrieval-Augmented Generation (RAG)
6 andMulti-Agent framework to provide a better token economy
while maintaining necessary contexts for code generation ensuring
consistent user experience.
•The Need for Component Segmentation: Our pilot study

highlighted that users often request additional features without
intending to modify existing elements. For example, requests like
“make it move left and right” or “create a button to control the
height” are common. However, our initial system, lacking compo-
nent segmentation, generated new scripts that not only addressed
these requests but also included comprehensive definitions extend-
ing to the user’s entire context. This usually resulted in unintended

5In the context of Large Language Models (LLMs), we define “token economy” as
efficient management and utilization of the input and output tokens within the con-
straints of the model’s processing capacity. Tokens, in this context, are the basic units
of text that the model processes, which can be words, parts of words, or punctuation
marks, depending on the tokenization process used by the model.
6RAG enhances language models by integrating information retrieval(fetching relevant
documents in response to queries and using these to guide output.), allowing for more
accurate and information-rich text generation.

changes to the primitive elements, and high variability exists in code
results. This issue underscores the need to separate primitives, ani-
mations, and interactions within our system. Our formative study
findings align with this insight that animations and interaction
enhancements should be built on and added to existing primitives,
facilitating incremental development based on an existing base.

In Section 5, we discuss how we apply the proposed features
learned from the Pilot Study in detail.

5 SHAPE-IT
We developed SHAPE-IT, a system that turns user instructions into
executable code for creating and modifying shapes. Similar to the
initial prototype, our system has two components: 1) a frontend
interface for the shape display simulator built with JavaScript and
2) a backend LLM-based code generator built with Python. Our
system is designed to address all of the five design requirements
identified in the early prototype. In this section, we describe the
system design and implementation of SHAPE-IT.

5.1 SystemWalkthrough
SHAPE-IT not only allows users to provide instructions in an incre-
mental manner, where users are able to do follow-up commands to
add extra behaviors or make edits on current creation, but also can
understand a composite prompt to create dynamic and interactive
shape-changing behaviors at once. we describe how our system
works through the following example prompt: “create a heart shape
with a pulsing animation, and move the shape left and right with two
buttons.”. Our system generates the interactive animation as seen
in Figure 4. Below, we detail how our LLM pipeline produces the
resulting outcome based on this user input.

Step 1. Segmentation: Decompose User Input into Three
Key Elements. First, the system decomposes the user input
into three key elements: Primitive , Animation , and Interaction ,
informed by our formative exploration (Figure 5 A, B1). In
this example, the system segments the inputs as follows: 1)
Primitive: “Create a heart shape on the display” , 2) Animation:
“Implement a pulsing animation to simulate the heart beating” ,
and 3) Interaction: “Create two buttons, one to move the heart shape to t-
he left and another to move it to the right across the display” .

Step 2. Parameter Generation: Identify Key Shape Properties
for Dynamic Motion. In our system, dynamic motion is achieved
by updating the shape properties of primitive objects. To this end,
the system identifies the necessary parameters for the specified an-
imation and interaction (Figure 5 B2-3). For instance, in the current
example, the system identifies four key parameters: 1) positionX
of the heart shape, required for horizontal movement, 2) positionY
of the heart shape, required for vertical movement, 2) scale of the
heart shape, which is necessary for the pulsing animation, and 4)
height of the heart shape to control the visibility. The system uses
these properties as controllable parameters for both the animation
and interaction.

Step 3. Parameter Validation: Ensure integrity of parameter
control on the auxiliary components. SHAPE-IT ensures the

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 4: SHAPE-IT UI with an example prompt; (A) The feedback message communicates the generating steps to users,
indicating Primitive , an Animation , and an Interaction scripts are generated. (B) the Parameter Control Panel; (C) Loaded
scripts appear as Script Card UIs, where they can be toggled on/off.

integrity of parameter control within the animation and interac-
tion segments by incorporating an additional parameter validation
step. This step specifically assesses whether the current primitive
parameters can fulfill the objectives outlined in the animation and
interaction segments. This is crucial for managing scenarios where
a user’s subsequent actions may necessitate an animation or inter-
action that implies the need for a parameter not included in the
initial primitive setup. However, in this context, the code generation
process in Step 2 has already taken into account the requirements
of all three segments. Consequently, it has generated a list of pa-
rameters that encompasses all necessary implications, leading to
successful validation.

Step 4. Update Code Instruction: Prepare Proper Code In-
structions by Incorporating Extracted Parameters. Next, the
system constructs three code instructions by incorporating ex-
tracted parameters (Figure 5 B4). For instance, in the current ex-
ample, the resulting prompts are as follows, where [params] are
identified parameters: 1) Primitive: “Create a heart shape on the
display by setting its initial position with [heartPositionX] and [heart-
PositionY], scaling it with [heartScale], and establishing its height
with [heartHeight] for the 2.5D effect.”. 2) Animation: “Implement
a pulsing animation to simulate the heart beating by periodically
changing [heartScale]”. 3) Interaction: “Create two buttons: one that
decreases [heartPositionX] to move the heart shape to the left, and
another that increases [heartPositionX] to move it to the right across
the display.”. These instructions will be sent to the frontend as well,
notifying the users of the creating tasks(shown in Figure 4 A).

Step 5. Script Generation: Generate Executable Code for
Primitive, Animation, and Interaction. Given the updated
prompt, the system generates the script for each component. The

system includes three independent LLM modules, each responsible
for constructing a script for primitive, animation, and interaction
(Figure 5 C). These LLM modules generate executable code that
controls the height of each pin in the shape display. The prompt
engineering for this module combines three techniques: 1) rule-
based prompting, 2) retrieval augmented generation (RAG), and 3)
structuring of input and output, which will be described in a later
section.

Step 6. Code Execution: Run the Generated Script for Shape
Construction and Animation. Once the backend system gener-
ates the executable script, it sends the information to the frontend
in JSON format, which generates a dynamic shape in a Three.js
simulator which will be synced to a physical 24 x 24 shape display
(Figure 5 D). The frontend system first processes the primitive script
to construct static primitive shapes. Then, it executes the animation
and interaction scripts to make the dynamic motion. The extracted
parameters are also displayed as a list of slider values in the user
interface. When the animation or interaction alters these param-
eters, the slider values are updated accordingly. Simultaneously,
the frontend interface shows the previous prompt, generated code,
and the system’s explanations of how the provided prompt was
interpreted.

Step 7. Interaction and Modification: Interact with the Shape
Display and Update Results. Once the code is executed, the user
can see the result, interact with the generated shape, or refine the
outcomes by adjusting the generated parameters. The slider values
are not only useful for the animation and interaction modules but
also enable users to interactively modify the shapes without having
to issue new commands. Users can also update the result by entering
a new command. For example, if a user says, “instead of moving the

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

v
e

e
T

e
e
e

e
e

e
e
e

e
e

e
e

ee

e
e
e

ly

Frontend (Javascript)

@ Parameter

send&load Primitive script in run time

Backend(Python & LLMs)

</> Primitive Script

attach animation/interaction script to the base Primitive and execute to update the parameters \)
@ Script Cards UI! :

“ai , update Pin

splay heights
parameter .

control UI ; :
: register buttons:

to control :
update yy

parameter
targeted

parameter

PROMPT HELPER

1. Segment, Re-prompt the text input

r-- (primitive segment)
I

i}

Text —_— -- (animation segment)

i}

‘== »(interaction segment)

2. Extract parameters & Update instructions

New code instruction

P1 :P2: P3 :P4:

SCRIPT GENERATORS

>) PRIMITIVE AGENT

generate code for required shape, motion displayed on Shape display

Slider UI

© Virtual shape displ arent ” ESOP E GISPIGY GED GaE=ED generate code for manual-control of the targeted parameters

| User Text Input @ , 7 x

fc ccsssassnessesesesussnseneesenseet ttt MMM occ ccc cecccececoececueitty Ms ccssaaesatsassatensesatsnsenessatsassueesatsassaeesassaseneesateasen)
B | sub-chain 1 | Segmentation f sub-chain 2 | Parameter Generation : | sub-chain 4 | Updated code instructions !

. heartPositionX heartPositionY (— . . op sage \
Create a heart shape on the display > Create a heart shape on the display by setting its initial ;

: 7 heartScale heartHeight 4 position with PAEartPOsitiGAX) and |‘heartPositionyY ‘|
“ [imeemen apulsing animation to) teeeeeeeeeccceeeeeeeessccceceeeeeeessccceeeeeeteeesececeeeeees i scaling it with PAE@artSEaley, and establishing its height

create a heart shape simulate the heart beatin : cc i th [ont ofinetarne + g : | sub-chain 3 | Parameter Validation : : with [heartHeight | for the 2.5D effect. 3

animation, and move the : Create two buttons, one to move the Ly

shape left and right with heart shape to the left and another + Pulsing can be ——— [heartscaie _| 7
two buttons. to move it to the right across the i; achieved by 7

” display it —» |

Fm. +> Left and right it
: movement can

Current Primitive heartPositionX | | heartPositionY ‘ be achieved by _LheartPositionx |
Parameter in Za ;

Session heartScale heartHeight — >

Bon necrnencocnsno ncnczocmnococmocbcao-bcnioc0ca0) “hoozsto:totazo:o2ca-o:bo:070:b2esto-o:st9-b2ssy-o:so:to‘a-o:cbca-o2t9sA-0-b24nc0-0550-0)

Figure 5: SHAPE-IT System Architecture. (A) Text Input is handed to Prompt Helper, (B) Prompt Helper processes it to provide
code instructions; (C) Script Generators generate the Javascript codes based on the instructions; (D) the generated codes are
executed in the frontend, controlling the shape display and creating UI elements for users to adjust parameters.

position, I want it to rotate when I click the button”, the system adapts
by adding [heartRotation] parameters in the next round, where the
system modifies the code for the existing primitive and animation
objects accordingly.

5.2 Implementation
Backend System. The backend of the system consists of two
components: a prompt helper module (Steps 1-3, Figure 5 A-B) and
a script generator module (Step 4, Figure 5 D). We provide our
prompts for both prompt helper and script generator modules in
Appendix C.

5.2.1 Prompt Helper. We developed a prompt helper module to
convert natural language inputs into appropriate code instruc-
tions. The prompt helper is built upon GPT-4-Turbo and utilizes
AI-chaining method [64] that sequences multiple language mod-
els to progressively transform user instructions into executable
code directives. This approach breaks down the overarching task
into smaller, specialized steps. In our implementation, this module
functions through four sub-chains: 1) segmentation, 2) parameter
generation, 3) parameter validation, and 4) code instruction prompt
generation. After generating segments and parameters, the param-
eter validation chain assesses whether the identified parameters

align with the user’s intent. If not, it initiates a subroutine to ad-
just the existing parameters and correct the command based on
the revised parameters. These parameters are then used to refine
the segmentation results, culminating in the formation of code
instructions derived from the generated parameters.

5.2.2 Script Generator. Script generator modules take updated
prompts as input and generate executable code as output. There
are three script generator modules for primitives, animations, and
interactions, all built with GPT-3.5-Turbo-0125. We selected this
model to achieve faster code generation. The prompt engineering
for the script generator is based on the following three techniques:
1) rule-based prompting, 2) retrieval-augmented generation (RAG),
and 3) input/output structuring.
(1) Rule-Based Prompting: Rule-based prompting establishes clear
guidelines for the generated results. It emphasizes functional code
that aligns with our specific requirements by providing the fol-
lowing four instructions: structured code templating through the
use of parameter lists for initialization, coding practices to ensure
modularity and system compatibility, detailed instructions for error
handling, and a focus on goal orientation to enhance code complex-
ity and efficiency.

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

(2) Retrieval Augmented Generation: We employ a retrieval-
augmented generation (RAG)[29] to match instruction-code pairs
relevant to the given instruction. We have developed three dis-
tinct input-output collections categorized under primitives, anima-
tions, and interactions. These collections are stored within separate
chroma vector stores for efficient retrieval. During the retrieval
phase, we use the semantic similarity example selector[30] from the
Langchain framework[1] to identify the three most semantically re-
lated instructions in our database. These are then incorporated into
the final generation template. This method ensures that the gener-
ated code leverages relevant examples and adheres to the formatting
and structural guidelines established by our rule-based prompting.
Each input-output collection for Primitive Primitive , Animation ,
and Interaction (detailed in Appendix C.2.2, C.3.2, C.4.2) was built
under our formative study results (section 3.2). This formative study
categorization guided the development of multiple code examples
for each category. Additionally, we included new examples based
on observations of frequently attempted shape primitives by par-
ticipants in our pilot study.
(3) Input/Output Structuring: For JSON output, we utilize the
structured output parser[31] within the same LangChain framework.
The output JSON follows this structure: 1) user input, 2) parameters
needed for code generation, 3) the category of the script generator,
4) a system-generated explanation for interpretation, and 5) the
executable code generated by the script generator.

5.2.3 Context Management. SHAPE-IT introduces a method for
managing context that addresses the challenges related to the to-
ken economy observed in our pilot system and, in the meantime,
facilitates continuous conversations between users and the system.
Our framework employs code generation agents to hold onto a
single history of output code as short-term memory. This allows
for consistent and incremental user modifications. Additionally,
we incorporate a Retrieval-Augmented Generation (RAG) mecha-
nism within each code generator, enabling the selective retrieval of
relevant database examples, which diminishes the necessity for ex-
tensive few-shot examples. Furthermore, the Prompt Helper Agent
is responsible for managing long-term memory, archiving all user
inputs along with their associated code instructions, thereby pre-
serving the comprehensive context of the interaction. Despite the
quadratic increase in token cost for the Prompt Helper Agent, it
is much more compact than code results. Yet, by doing this, we
allow code-generator agents to sustain a linear growth in token cost.
Therefore, we offer an improved context management strategy with
a better token economy than the pilot system without breaching
the model context limitation.

Frontend Sytem. The frontend system consists of 1) a shape dis-
play simulator and control interface, 2) conversation history, 3) an
error handling console, and 4) hardware communication.

5.2.4 Shape Display Simulator and Control Interface. The frontend
interface renders 24 x 24 shape display simulator built with ThreeJS,
along with sliders for the generated parameters. The initial values
of these parameters are scaled up by a factor of three and reduced by
a third to establish the upper and lower bounds of the slider range.
Through real-time manipulation of these sliders, users can directly
control the primitives. For interactions, interactive elements like

buttons identified in the interaction script are highlighted in orange.
Each button element features a dropdown list for selecting its size
(1x1 or 2x2), as well as sliders for adjusting its position (posX and
posY) on the display and height.

5.2.5 Conversation History. The UI records and displays the en-
tire history of interactions between the user and the system. Each
generated script is represented as a card with a textual description,
color-coded based on their types. Users can navigate back to any
previous card to continue editing from that point, facilitated by the
backend’s ability to roll back to a specific history state. This feature
not only provides a comprehensive overview of the authoring ses-
sion but also enables users to reference previous commands, inputs,
and outcomes.

5.2.6 Error Handling Console. When the front end encounters com-
pilation errors while loading the generated scripts, it requests the
backend to regenerate the scripts again.

Specifically, when the front-end encounters a compilation error,
it sends a ’compile error message’ to the backend LLM modules
for each module to regenerate the code. Since each code generator
retains the memory of the previously generated result, the modules
can adaptively correct the errors. This is a common practice for
handling errors in code generation. [11].

5.2.7 Hardware Communication. For the physical shape display,
we replicated a 24x24 (434 × 434mmdisplay area, with 100mm stroke
length) inFORM shape display, based on an existing design [60]. For
bi-directional data transmission, we utilized the MQTT (Message
Queuing Telemetry Transport) protocol. The MQTT server, hosted
on our university’s server, was built using RabbitMQ. Our frontend
JavaScript application can publish and subscribe to MQTT topics,
which convey the target heights of pins based on the generated
script. It also receives real-time height information of the pins from
OpenFrameworks, which is used to control the movements of hard-
ware motors. All these hardware development and communication
details are elaborated in prior publications [19, 44].

6 Performance Evaluation
6.1 Method
To assess the performance of our system, we conducted an eval-
uation using a subset of data from our crowdsourcing study in
formative exploration. Specifically, we randomly selected 50 data
points from a total of 314 user-generated prompts (shown in Appen-
dix D). These prompts were then input into our system to determine
its success rates, defined by the system’s ability to attach generated
code to the scene without resulting in compile errors. The system
architecture listed for comparison marks the progression from our
initial system from the pilot study to the current SHAPE-IT system.
Our hypothesis is that the addition of modules transitioning from
the baseline to the SHAPE-IT system should not negatively influ-
ence the code compilation success rate. Maintaining or increasing
the compilation success rate validates this hypothesis while also
achieving the goal of a more intuitive user-generation flow for
SHAPE-IT. This evaluation method was inspired by LLMR [15].

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

The success rate was calculated using the following formula:

𝑆 =
1
𝑛

𝑛∑︁
𝑖=1

©« 1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

𝑠𝑖 𝑗
ª®¬ , 𝑛 = 50

In this formula, 𝑠𝑖 𝑗 represents the success or failure of each segment
within a sample as a binary outcome (1 for success, 0 for failure).
The average success for each segment yields the sample’s success
rate. We then computed the overall average success rate by taking
the mean of these rates across all samples.

Our evaluation spanned four models, two of which is a baseline
single code-generator architecture without segmentation based on
(primitive, animation and interaction) intent segmentation, and the
latter two is Multi code-generator architecture that involves intent
segmentation.7:

• The Baselinemodel, which utilizes a Single code-generator
with few-shot prompting. Where we feed the user input di-
rectly to the code generator with few-shot selected examples
from the combination of Primitive, Animation, and Interac-
tion Agents.

• Baseline+RAG, Single code-generator baseline, replacing
few-shot prompting with Retriever-Augmented Generation
(RAG). with RAG retrieval collection built with combined
example of Primitive Animation and Interaction Examples

• SHAPE-IT Segmentation, Multi-code generator frame-
work which does simple segmentation without parameter
generation and inference. Similar architecture with current
system Figure 5 with lesser version of PromptHelper (Chain
1 only).

• The SHAPE-IT System, our current system Figure 5 which
builds upon the Segmentation model by adding a parameter
pipeline and code instruction.

Additionally, we evaluated model latency to inform our choice
of code-generating agent, using the baseline system as a reference.

In evaluating the latency of code generation, we compared
three widely used large language models (LLMs) tailored for code-
generation tasks: gpt-3.5-turbo-0125, gpt-4-1106-preview, and gpt-
4-turbo-preview. Our findings, illustrated in Figure 6 A., revealed
that gpt-3.5-turbo-0125 exhibited significantly lower latency, aver-
aging 8.01 seconds across 50 samples. This was compared to 24.41
seconds for gpt-4-1106-preview and 19.27 seconds for gpt-4-turbo-
preview. Consequently, we selected gpt-3.5-turbo-0125 as the base
model for our code-generation agents due to its efficiency.

From Figure6 B., the Baseline system achieved a success rate of
78%, and Baseline+RAG achieved 80%. Suggesting moderate compi-
lation success for our baseline model. The SHAPE-IT Segmentation
system has a lower success rate of 65%, due to the lack of coherece
in construction of segments. While the segmentation results reason-
ably reflect user’s intent, we observe that the failure cases mainly
comes from the animation/interaction segments doesn’t provide
a coherent instruction with the primitive. SHAPE-IT system ad-
dresses this problem by introducing parameter inference after the
segmentation process to allow code-instruction to be built for the

7Baseline and Baseline+RAG models, are single code-generator architecture with-
out segmentation,𝑚𝑖 = 1. In contrast, the SHAPE-IT Segmentation and SHAPE-IT
segments user prompts into three distinct segments—primitive, animation, and inter-
action—thus𝑚𝑖 = 3 for these systems.

A. Model Runtime Compare

5

10

15

20

25

GPT-4 Turbo Preview

GPT-4-1106 Preview

GPT-3.5 Turbo-0125

8.01

24.41

19.27

SHAPE-IT

SHAPE-IT Segmentation

Baseline

S
u

c
c

e
s

s
 R

a
te

R
u

n
ti

m
e

(s
e

c
o

n
d

s
)

Baseline + RAG

B. System Success Rate Compare

0.80

0.65

0.820.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.78

Figure 6: A.Model Runtime Comparison. B.System Success
Rate Comparison

three segments leveraging the inferred parameters, this approach
allows each segments to be interweaved by parameter instructions
therefore provides coherence structuring of the segments It achieves
the highest success rate of 82%, suggesting that the compilation of
the code is no longer effected by this incoherence.

7 User Evaluation
We conducted a study involving 10 participants who have never in-
teracted with shape displays to assess the effectiveness of SHAPE-IT.
Our aim was to identify both its strengths and limitations, inform-
ing potential areas for improvement through example interaction
processes and results.

7.1 Participants
Our participants, comprising 6 males and 4 females with an average
age of 28.89, were non-experts in shape displays but had familiarity
with LLMs. Coding proficiency varied, with 7 out of 10 participants
reporting proficiency, while 4 were skilled in design and 8 were
familiar with prompting strategies. Each participant spent 1 hour
in the study and received $15 for their time.

7.2 Procedures and Tasks
Participants underwent an introductory session (10 mins) where
one of the authors explained the study procedures followed by three
main tasks (35 mins).
Task 1: Participants were tasked with creating a simple primitive
shape and then enhancing it by incorporating additional animation
or interaction behaviors. This task tests the system’s ability to
enable user inputwith the intention to author animation/interaction
based on an existing primitive.
Task 2: Participants were asked to provide composite instructions,
combining multiple commands into a single sentence. This task
aimed to test the system’s ability to parse and execute complex
instructions.
Task 3: Participants engaged in rapid idea exploration, where they
were free to utilize any instructions to create the desired shape-
changing behaviors. This task allowed for creative exploration of
the system’s capabilities.

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 7: Study setup and examples of participants’ creations: P8 created an interaction to use a button to move the position of
a star shape. P9 generated an animated mountain terrain from a movie. P4 created a spinning fan. P10 animated a growing
mushroom. P6 made a dancing stick figure. P10 designed a controllable wave animation with buttons.

Finally, we conducted a semi-structured interview (15 mins) to
gather insights from the participants’ perspectives.

7.3 Results
Using the video recordings and the transcripts from the interviews,
we synthesize a few qualitative insights. Some of these insights are
specifically applicable to our system and others represent ongoing
challenges with generative AI as a whole.

7.3.1 Overall Generated Results. Based on participants’ instruc-
tions, SHAPE-IT successfully created basic shapes (e.g., circles,
cubes, triangles) and some simple animations (e.g., Star Twinkle,
Raining effect). Impressively, it can create a flower with 8 petals,
where the size of the petals can be controlled by sliders. It also
achieved a chasing animation, where participants could use the UI
to control the position of the chased object, while another object
actively chased it. However, more complex shapes (e.g., Four-Wheel
Car, Cat Face) and animations (e.g., Morphing, Eye Blinking) of-
ten failed. Interestingly, the system worked for prompts like “cir-
cling around”, but failed with “Orbiting”. Simple interactions (e.g.,
button-triggered text) were generally successful, while intricate
interactions (e.g., controlling speed) frequently failed. Addition-
ally, we have included a table in the Appendix E summarizing all
attempted prompts by participants, with a subjective assessment
of the results (Success, Partial Success, Failure). This provides a
glanceable overview of the user study outcomes.

7.3.2 Overall impressions. The study indicated strong interest in
the system, with notable praise for the user interface. Participants
commended the system’s adeptness at interpreting language inputs
and offering granular control over parameters. They observed that
the system’s segmentation of primitives, animations, and interac-
tions corresponded closely with their expectations, also suggesting
that the system’s initial feedback output accurately reflected their

intentions. However, this raises expectations for the system’s sub-
sequent visual outputs(via code results) towards which participants
commonly expressed a desire for greater accuracy.

Participants highly valued the ability to adjust parameters along-
side 3D content and found the physical, interactive buttons on the
shape display to be a novel experience. However, in some instances,
participants found the parameters to be overly complex – such as
when attempting to create a human face – where the adjustable pa-
rameters were overwhelmingly extensive. This provokes questions
about potentially limiting the number of adjustable parameters in
the interface to reduce cognitive overload.

7.3.3 Concrete vs Abstract Creations. During Task 3, participants
encountered a tension between concrete shapes (squares, cubes,
letters, emojis, andmathematical surfaces) andmore abstract shapes
(zombies, cats, and birds). When abstract shapes were desired, they
often found the quality of the generated shapes to be unsatisfactory.
This tension is an expected challenge inherent in generative AI. For
example, while imagining a cube typically yields a consistentmental
image among a broad population, abstract shapes like zombies or
cats vary widely in interpretation. In our case, this challenge is
further compounded by the resolution limitations of the shape
display itself. We recommend that future researchers develop code
examples for various primitive shape categories. This approach will
help GPT achieve better code generation by following predefined
code structures, thereby improving the quality of the desired shapes.

7.3.4 Apparent Learning Curve. Participants noted that the con-
ceptual models of primitives, animations, and interactions didn’t
always seamlessly align with their use cases. For instance, the in-
ability to spawn a primitive through interaction is a functionality
our system does not support because it considers animations and
interactions as secondary to a single primitive. They expressed a
recurring desire for more transparency about the system’s structure
during prompting, acknowledging the challenge of understanding
these supposed constraints up front, especially for a novice user.
While there’s a common belief that natural language input requires

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

minimal training, this underscores the presence of a learning curve
associated with such interfaces, especially when the system con-
tains additional mechanisms that improve the experience in the
long term (such as parameter adjustment).

7.3.5 Prompting vs. Coding. When comparing user preferences
between the coding interface and LLM authoring, feedback varied
significantly based on individuals’ coding proficiency. Participants
without coding experience found the LLM tool beneficial for intu-
itive exploration and design iteration. However, participants with
coding skills preferred using both the coding interface and the LLM
system together. This hybrid approach allowed for precise adjust-
ments, especially when initial outputs didn’t match their intentions.
Notably, one proficient coder viewed the LLM tool skeptically, pre-
ferring a more hands-on coding approach. This highlights the chal-
lenge of accommodating both novice and expert users in authoring
tools [2, 4, 12]. Future systems could offer options for expert users
to directly edit and refine the generated code, as indicated by the
study findings.

7.3.6 The Importance of AI Interpretability. Participants value the
step-by-step feedback from the AI system, which enhances under-
standing of its decision-making process. They appreciate how ad-
justments and feedback influence the resulting 3D content, leading
to a sense of achievement when they get the result they intended.
Conversely, discrepancies between the AI-generated content and
participants’ expectations can cause confusion and frustration. Par-
ticipants prefer upfront recognition of system limitations and trans-
parent communication to set realistic expectations and mitigate
disappointment. This highlights the importance of advances in AI
interpretability.

7.3.7 Future Prospects for AI Authoring: Text-to-Shape Display vs.
Other LLM Tools. During our discussions on the evolution of AI
authoring tools, participants expressed optimism about the future
of these innovations. A common thread in these conversations was
the admiration for the tangible aspects of AI-generated content, an
area where many current AI authoring tools fall short. The ability
to physically interact with AI-generated 3D objects was highlighted
as a novel and valuable feature, setting our text-to-shape display
system apart from other LLMs.

Many users recognized the unique strengths of various AI author-
ing tools, but they particularly appreciated the tangible interaction
offered by our system. One user eloquently states, “Compared to
SORA, I can physically feel the 3D creations and even use tangible
buttons for control, which is cool. This could be incredibly beneficial
for 3D designers.” This feedback underscores the potential impact
and utility of tangibility in AI authoring, suggesting a promising
direction for further development in making digital creations more
accessible and interactive.

8 Potential Application Spaces
By allowing users to author dynamic shape-changing behaviors on
pin-based shape displays through simple text instructions. Here, we
briefly introduce how SHAPE-IT could be employed in applications
such as adaptive tabletop furniture and gaming & storytelling. The
results shown in Figure 8 were actually generated from our SHAPE-
IT system.

Adaptive Tabletop Furniture: Inspired by the vision of adap-
tive and dynamic furniture presented in TRANSFORM [63], where
shape-changing tabletop surfaces dynamically react to users,
SHAPE-IT brings this vision close to reality by enabling users
to create customizable and interactive tabletop features only by
speech. For instance, as illustrated in Figure 8 A, a user can create
a cup holder with a hidden button that allows for adjusting the
holder’s position. They can also flexibly ask the display to create a
room interior, as B represents a shape-changing clock generated
based on language instruction.

Figure 8: Potential applications that are enabled by SHAPE-
IT: A: pass a beverage across the table by a hidden button;
B: tangible clock displaying 7:02; C: a button that acts as
a trigger to trap a character; D: flush a character by host
manipulation of the scene of an emerging wave;

Gaming and Storytelling: SHAPE-IT enables users to provide
real-time instruction, which can expand the entertainment and
expressive capability of the shape displays. For example, board
games like Dungeon & Dragons require the host to use static game
sheets and verbal communication as a way to bring the player an
immersive game experience. SHAPE-IT understands such a natural
language-based instruction and creates on-demand dynamic scenes
on shape displays that align with host descriptions, which enhance
their gaming experiences. As illustrated in Figure 8C, the host can
author a trapmechanism that is triggered when a player figure steps
on a specific trigger, forming a cage that traps the frog character,
which could be flexibly generated based on a player’s narrative
design. The game host can also dynamically alter the game terrain
based on the storyline, providing a customizable gaming experience.
Figure 8D showcases an example where the frog character sitting
on the island is caught off-guard by a rising tide. By not requiring
any programming experience, SHAPE-IT allows players to plan
and implement game mechanisms or tangible story design via text
input.

9 Limitation & Future Work
In this paper, we explored text-to-shape-display system to allow
users to author shape display behavior through natural language
instruction, using LLMs. Our proof-of-concept system has shed
light on numerous research opportunities, as a first attempt to
configure shape-changing interfaces using text-based instruction.
This section reflects on our research, discussing the limitations and
future work. It also includes system/UI design recommendations for
future researchers in both the AI/LLM domain and shape-changing
interface domain to explore this novel research area.

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

9.1 Prototype Limitation & Potential
Improvements

9.1.1 Flexible Authoring Framework. Our existing system is struc-
tured to facilitate the generation of a single primitive, supplemented
by a framework that supports animation and interaction enhance-
ments. This design choice stems primarily from the inherent limi-
tations in our code’s ability to bind animation and interaction func-
tionalities exclusively to specific primitives. Through user feedback,
it became evident that such a setup is restrictive, especially when
users wish to generate primitives through interactive or animated
processes. To cater to a wider array of design possibilities, we recog-
nize the imperative need to develop a more versatile framework. By
allowing animations and interactions to be freely associated with
any element, thereby enabling the construction of complex, non-
linear scenes, we can enhance the system’s utility and flexibility
for diverse design applications.

9.1.2 Parameter Bound Control Issue. In our prototype, we ac-
knowledged the absence of a robust mechanism for inferring pa-
rameter bounds. To achieve a sophisticated inference of parameter
bounds, it is essential to conduct a meticulous analysis of system
constraints, map out the dependencies between parameters, and
utilize data-driven insights alongside machine learning techniques.
This approach will facilitate the accurate determination of param-
eter limits in line with operational constraints and dependencies.
Incorporating robust validation methods and a feedback loop is
crucial for refining the accuracy of these inferences over time. Fur-
thermore, designing this system with scalability and flexibility in
mind will ensure it can adapt to evolving system designs and ex-
ternal factors, significantly bolstering the prototype’s functionality
and reliability in diverse operational contexts.

9.1.3 Deploying and Improving the Prototype as Usable Tools. Our
intent for our prototype system is to be an accessible, generalizable
tool for HCI researchers, designers, or even novices to easily plan
and customize shape display projects as we open-source the code.
To this end, there are other improvements we could make to the
system to be further generalizable, for example, to adapt to shape
displays with different configurations (resolution, number of pins,
pin stroke, etc.), as our prototype was confined for the specific 24
x 24 shape display hardware. By making it accessible online with
any browser, we consider our tools useful not only for designing
behavior on shape display hardware but also for informing people
considering/planning to develop shape display to identify their
hardware requirements by testing target behaviors interactively
via natural languages.

9.1.4 Physical Constraints of the System. The physical constraints
of our system are largely divided into two types of geometries:
Impossible Geometries: These include geometries that are not
feasible due to hardware limitations, such as floating or overhanging
structures.
Intractable Geometries: These refer to complex geometries that
are challenging to handle, such as the animation of an object rotat-
ing along the lateral axis (as opposed to the vertical axis).

While the constraints in category (a) are purely due to hardware
limitations that the LLM cannot handle, those in category (b) can be
addressed by improving the LLM’s prompting capabilities beyond

simple ’x-y array’ interpretations. This includes incorporating a 3D
mesh renderer/shader and enhancing the code structure to manage
complex geometries more effectively.

Figure 9: Text-to-point-cloud prototype’s example result

9.2 Potential Future Direction and Implication
for the General Approach

9.2.1 Limitation of Code Generation, and Potentials of other LLM
Tools. In light of the previously discussed limitation, while the
code-generation LLM approach in our system is very good at gen-
erating numerically describable motion and geometries (e.g., wave,
square, cone), it suffers from making semantic shapes and motion
(e.g., car model, human face, etc.) In the computer graphics com-
munity, AI-assisted LLM-based geometry generation systems are
well-explored [37, 39, 41, 53]

In fact, in the early stage of our project, we experimented with
employing the text-to-point-cloud LLM tool, Point-E [45], to gen-
erate a 3D model using text to be rendered on the shape displays
(Figure 9). While this prototype was capable of generating semantic
models, we found the AI system not interpreting the shape dis-
play configuration (vertically moving arrays of pins) had an issue
when representing some shapes (e.g. granular detail shapes). Also,
it is limited in creating motion and interaction. Hence, we have
employed a code generation approach for our final approach.

We believe the future text-to-shape-display system should inte-
grate multiple types of LLM tools to mitigate each pros and cons.
In such a future system, code-generation LLM should have access
to generate geometric 3D models that can be employed in the exe-
cuted code to supplement the weakness of creating semantic shapes.
Other LLM approaches, such as generating images or videos, which
can be translated into pin height of shape displays, could be another
option, as image and video generation tools are actively advancing
to flexibly create images in a fast manner [48]. Still, we consider
code-generation LLM should be central for shape-changing displays
(or shape-changing interfaces, in general), as the behavior of these
hardware is usually confined to computationally controlled code.

9.2.2 Incoprating Multi-Modal Interactions. Additional future di-
rection for the system should be in incorporating rich multi-modal
interactions, to harness the tangibility and embodied affordance of
the shape display. Beyond text input, such a system could incorpo-
rate gesture and speech interaction [7], allowing users to point at a
location of the display and summon a shape. Tangible interaction

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

could be incorporated to edit (or manipulate) the behavior gener-
ated by the system to author them in a physical manner, fusing the
interaction technique explored in prior works [6, 19, 34]. Such an
approach should require an additional AI agent in our system so it
can flexibly interpret the gestures and tangible cues. Such a direc-
tion would help us reach to the vision of reconfigurable material
or clay [20, 23], that reconfigure based on user intent expressed in
tangible, gestural, and speech interaction.

10 Conclusion
In this paper, we introduced SHAPE-IT, a text-to-shape-display
system, harnessing multiple LLM agents (GPT) to generate code
to control pin-based shape display based on text inputs by users.
The system allows users to provide natural language instruction to
author shape, motion, and interaction of the hardware. Our early ex-
ploration, based on the crowdsourcing study and an early prototype,
employing a single LLM agent, informed us how people describe
behaviors on shape displays using texts and how our system should
be designed, including UI features and multi-agent architecture.
Our implemented system was evaluated through a technical evalu-
ation, which reported the code-compilation success rate, and a user
study, which revealed the usability of the system, as well as diverse
tangible and shape-changing results created from participants’ text
input. We consider this paper to be the first step in opening up a
novel research realm in AI-infused shape-changing UIs that can
dynamically shift shapes by flexibly understanding users’ intent.

Acknowledgments
We acknowledge the CERES program and Prof. Andrew Chien at
the University of Chicago for their support. We thank Richard Liu
and Rana Hanocka from 3DL at the University of Chicago for their
support for the initial exploration of this research.

We also appreciate the help of Actuated Experience Lab members
with the project, specifically Ran Zhou, for advising the User Study
methods. Lastly, we thank everyone who helped with the assembly
process of the inForm shape display (originally designed in MIT’s
Tangible Media Group), including Chenfeng’s mom, Lilith Yu, You
Li, Yifan Zhou,Willa Yang, Matthew Jeung, Emilie Faracci, Harrison
Dong, Raymond Qian, Ramarko Bhattacharya, and Skylar Liu.

References
[1] 2024. Langchain - Your AI Language Model Partner. https://www.langchain.com/.

Accessed: 2024-04-02.
[2] Tyler Angert, Miroslav Suzara, Jenny Han, Christopher Pondoc, and Hariharan

Subramonyam. 2023. Spellburst: A Node-based Interface for Exploratory Creative
Coding with Natural Language Prompts. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology. 1–22.

[3] Anthropic. 2023. Introducing Claude 3: A New Generation of AI by Anthropic.
https://www.anthropic.com and https://docs.anthropic.com. Accessed: 2024-04-
03.

[4] Gilles Bailly, Mehdi Khamassi, and Benoît Girard. 2023. Computational model of
the transition from novice to expert interaction techniques. ACM Transactions
on Computer-Human Interaction 30, 5 (2023), 1–33.

[5] MP Barnett and WM Ruhsam. 1968. A natural language programming system for
text processing. IEEE transactions on engineering writing and speech 11, 2 (1968),
45–52.

[6] Matthew Blackshaw, Anthony DeVincenzi, David Lakatos, Daniel Leithinger, and
Hiroshi Ishii. 2011. Recompose: direct and gestural interaction with an actuated
surface. In CHI’11 Extended Abstracts on Human Factors in Computing Systems.
1237–1242.

[7] Richard A Bolt. 1980. “Put-that-there” Voice and gesture at the graphics interface.
In Proceedings of the 7th annual conference on Computer graphics and interactive
techniques. 262–270.

[8] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[9] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David
Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and
Aditya Ramesh. 2024. Video generation models as world simulators. (2024).
https://openai.com/research/video-generation-models-as-world-simulators

[10] Marion Buchenau and Jane Fulton Suri. 2000. Experience prototyping. In Pro-
ceedings of the 3rd conference on Designing interactive systems: processes, practices,
methods, and techniques. 424–433.

[11] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

[12] Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria. 2014. Supporting
novice to expert transitions in user interfaces. ACM Computing Surveys (CSUR)
47, 2 (2014), 1–36.

[13] Aubrey Colter, Patlapa Davivongsa, Donald Derek Haddad, Halla Moore, Brian
Tice, and Hiroshi Ishii. 2016. SoundFORMS: Manipulating sound through touch.
In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems. 2425–2430.

[14] Sida Dai, Brygg Ullmer, and Winifred Elysse Newman. 2024. MorphMatrix: A
Toolkit Facilitating Shape-Changing Interface Design. In Proceedings of the Eigh-
teenth International Conference on Tangible, Embedded, and Embodied Interaction.
1–12.

[15] Fernanda De La Torre, Cathy Mengying Fang, Han Huang, Andrzej Banburski-
Fahey, Judith Amores Fernandez, and Jaron Lanier. 2024. Llmr: Real-time prompt-
ing of interactive worlds using large language models. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. 1–22.

[16] Aluna Everitt, Faisal Taher, and Jason Alexander. 2016. ShapeCanvas: an ex-
ploration of shape-changing content generation by members of the public. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
2778–2782.

[17] Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally, Weijian Zheng, Meikang
Qiu, and Haihua Chen. 2023. Investigating code generation performance of
ChatGPT with crowdsourcing social data. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC). IEEE, 876–885.

[18] Daniel Fitzgerald and Hiroshi Ishii. 2018. Mediate: A spatial tangible interface
for mixed reality. In Extended Abstracts of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–6.

[19] Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii.
2013. inFORM: dynamic physical affordances and constraints through shape and
object actuation.. In Uist, Vol. 13. Citeseer, 2501–988.

[20] Seth Copen Goldstein, Jason D Campbell, and Todd C Mowry. 2005. Pro-
grammable matter. Computer 38, 6 (2005), 99–101.

[21] Seth C Goldstein and Todd C Mowry. 2004. Claytronics: A scalable basis for
future robots. (2004).

[22] John Hardy, Christian Weichel, Faisal Taher, John Vidler, and Jason Alexander.
2015. Shapeclip: towards rapid prototyping with shape-changing displays for
designers. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. 19–28.

[23] Hiroshi Ishii, Dávid Lakatos, Leonardo Bonanni, and Jean-Baptiste Labrune. 2012.
Radical atoms: beyond tangible bits, toward transformable materials. interactions
19, 1 (2012), 38–51.

[24] Hiroshi Ishii, Daniel Leithinger, Sean Follmer, Amit Zoran, Philipp Schoessler,
and Jared Counts. 2015. TRANSFORM: Embodiment of" Radical Atoms" at
Milano Design Week. In Proceedings of the 33rd Annual ACM Conference Extended
Abstracts on Human Factors in Computing Systems. 687–694.

[25] Sungjune Jang, Lawrence H Kim, Kesler Tanner, Hiroshi Ishii, and Sean Follmer.
2016. Haptic edge display for mobile tactile interaction. In Proceedings of the 2016
CHI conference on human factors in computing systems. 3706–3716.

[26] Seungwoo Je, Hyunseung Lim, Kongpyung Moon, Shan-Yuan Teng, Jas Brooks,
Pedro Lopes, and Andrea Bianchi. 2021. Elevate: A walkable pin-array for large
shape-changing terrains. In Proceedings of the 2021 CHI Conference on human
Factors in Computing Systems. 1–11.

[27] Peiling Jiang, Jude Rayan, Steven P Dow, and Haijun Xia. 2023. Graphologue:
Exploring Large Language Model Responses with Interactive Diagrams. arXiv
preprint arXiv:2305.11473 (2023).

[28] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 455, 23 pages. https://doi.org/10.1145/3544548.3580919

[29] Langchain. 2023. Retrieval - Expression Language Cookbook.
[30] Langchain. 2023. Semantic Similarity Example Selector - Langchain Core Docu-

mentation.

https://www.langchain.com/
https://www.anthropic.com
https://docs.anthropic.com
https://openai.com/research/video-generation-models-as-world-simulators
https://doi.org/10.1145/3544548.3580919

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

[31] Langchain. 2023. Structured Output Parsers - Langchain Python Documen-
tation. https://python.langchain.com/docs/modules/model_io/output_parsers/
types/structured. Accessed: 2024-04-02.

[32] Gierad P Laput, Mira Dontcheva, Gregg Wilensky, Walter Chang, Aseem Agar-
wala, Jason Linder, and Eytan Adar. 2013. Pixeltone: A multimodal interface
for image editing. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2185–2194.

[33] Jeeeun Lee, Jinmo Kim, Geehyuk Ko, Minsuk Suh, and Uichin Lee. 2022. Illumi-
nating the Design Space of Glanceable Artificial Intelligence in Mobile Intelligent
Personal Assistant Applications. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems. ACM.

[34] Daniel Leithinger, Sean Follmer, Alex Olwal, and Hiroshi Ishii. 2014. Physical
telepresence: shape capture and display for embodied, computer-mediated remote
collaboration. In Proceedings of the 27th annual ACM symposium on User interface
software and technology. 461–470.

[35] Daniel Leithinger, Sean Follmer, Alex Olwal, Samuel Luescher, Akimitsu Hogge,
Jinha Lee, and Hiroshi Ishii. 2013. Sublimate: state-changing virtual and physical
rendering to augment interaction with shape displays. In Proceedings of the
SIGCHI conference on human factors in computing systems. 1441–1450.

[36] Daniel Leithinger and Hiroshi Ishii. 2010. Relief: a scalable actuated shape display.
In Proceedings of the fourth international conference on Tangible, embedded, and
embodied interaction. 221–222.

[37] Peizhuo Li, Kfir Aberman, Zihan Zhang, Rana Hanocka, and Olga Sorkine-
Hornung. 2022. Ganimator: Neural motion synthesis from a single sequence.
ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–12.

[38] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. 2021.
Text2Mesh: Text-Driven Neural Stylization for Meshes. arXiv:2112.03221 [cs.CV]

[39] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. 2022.
Text2Mesh: Text-Driven Neural Stylization for Meshes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 13492–
13502.

[40] MayankMishra, Prince Kumar, Riyaz Ahmad Bhat, Vishwas Rudramurthy, Danish
Contractor, and Srikanth G. Tamilselvam. 2023. Prompting with Pseudo-Code
Instructions. In Conference on Empirical Methods in Natural Language Processing.
https://api.semanticscholar.org/CorpusID:258823202

[41] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. 2022.
CLIP-Mesh: Generating textured meshes from text using pretrained image-text
models. In SIGGRAPH Asia 2022 Conference Papers. 1–8.

[42] Ken Nakagaki, Daniel Fitzgerald, Zhiyao (John) Ma, Luke Vink, Daniel Levine,
and Hiroshi Ishii. 2019. InFORCE: Bi-Directional ‘Force’ Shape Display for
Haptic Interaction. In Proceedings of the Thirteenth International Conference on
Tangible, Embedded, and Embodied Interaction (Tempe, Arizona, USA) (TEI ’19).
Association for Computing Machinery, New York, NY, USA, 615–623. https:
//doi.org/10.1145/3294109.3295621

[43] Ken Nakagaki, Udayan Umapathi, Daniel Leithinger, and Hiroshi Ishii. 2017.
AnimaStage: hands-on animated craft on pin-based shape displays. In Proceedings
of the 2017 Conference on Designing Interactive Systems. 1093–1097.

[44] Ken Nakagaki, Luke Vink, Jared Counts, Daniel Windham, Daniel Leithinger,
Sean Follmer, and Hiroshi Ishii. 2016. Materiable: Rendering dynamic material
properties in response to direct physical touch with shape changing interfaces. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
2764–2772.

[45] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen.
2022. Point-E: A System for Generating 3D Point Clouds from Complex Prompts.
arXiv preprint arXiv:2212.08751 (2022).

[46] OpenAI. 2021. DALL·E: Creating Images from Text. https://openai.com/dall-e.
Accessed: 2024-04-02.

[47] OpenAI. 2023. ChatGPT: Language Models are Few-Shot Learners. https://openai.
com/chatgpt/. Accessed: 2024-04-02.

[48] OpenAI. 2023. DALL-E2. Retrieved April 3, 2024 from https://openai.com/
product/dall-e-2

[49] Sharon Oviatt, Björn Schuller, Philip Cohen, Daniel Sonntag, and Gerasimos
Potamianos. 2017. The handbook of multimodal-multisensor interfaces, volume
1: Foundations, user modeling, and common modality combinations. Morgan &
Claypool.

[50] Martin Porcheron, Joel E Fischer, Stuart Reeves, and Sarah Sharples. 2018. Voice
interfaces in everyday life. In proceedings of the 2018 CHI conference on human
factors in computing systems. 1–12.

[51] Prompting Guide. 2023. Few-Shot Learning Techniques. https://www.
promptingguide.ai/techniques/fewshot. Accessed: 2023-04-03.

[52] Simon Robinson, Céline Coutrix, Jennifer Pearson, Juan Rosso, Matheus Fernan-
des Torquato, Laurence Nigay, and Matt Jones. 2016. Emergeables: Deformable
displays for continuous eyes-free mobile interaction. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems. 3793–3805.

[53] Meitar Shechter, Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or.
2022. NeuralMLS: Geometry-Aware Control Point Deformation. (2022).

[54] Alexa F. Siu, Eric J. Gonzalez, Shenli Yuan, Jason B. Ginsberg, and Sean Follmer.
2018. ShapeShift: 2D Spatial Manipulation and Self-Actuation of Tabletop Shape

Displays for Tangible and Haptic Interaction. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3173574.3173865

[55] Alexa F. Siu, Son Kim, Joshua A. Miele, and Sean Follmer. 2019. ShapeCAD:
An Accessible 3D Modelling Workflow for the Blind and Visually-Impaired Via
2.5D Shape Displays. In Proceedings of the 21st International ACM SIGACCESS
Conference on Computers and Accessibility (Pittsburgh, PA, USA) (ASSETS ’19).
Association for Computing Machinery, New York, NY, USA, 342–354. https:
//doi.org/10.1145/3308561.3353782

[56] Arjun Srinivasan, Bongshin Lee, and John Stasko. 2021. InChorus: Designing
Consistent Multimodal Interactions for Data Visualization on Tablet Devices. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM.

[57] Evan Strasnick and Sean Follmer. 2016. Applications of switchable permanent
magnetic actuators in shape change and tactile display. In Adjunct Proceedings
of the 29th Annual ACM Symposium on User Interface Software and Technology.
123–125.

[58] Ryo Suzuki, Junichi Yamaoka, Daniel Leithinger, Tom Yeh, Mark D Gross, Yoshi-
hiro Kawahara, and Yasuaki Kakehi. 2018. Dynablock: Dynamic 3d printing for
instant and reconstructable shape formation. In Proceedings of the 31st annual
ACM symposium on user interface software and technology. 99–111.

[59] Faisal Taher, John Hardy, Abhijit Karnik, Christian Weichel, Yvonne Jansen,
Kasper Hornbæk, and Jason Alexander. 2015. Exploring interactions with phys-
ically dynamic bar charts. In Proceedings of the 33rd annual acm conference on
human factors in computing systems. 3237–3246.

[60] MIT Tangible Media Group. 2014. inFORM at Cooper Hewitt. Retrieved April 3,
2024 from https://tangible.media.mit.edu/project/inform-at-cooper-hewitt

[61] Kayla Thayer and Brad A. Myers. 2022. End-User Programming with Natural
Language: A Systematic Review and Research Agenda. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems. ACM.

[62] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered
by Large Language Models. In Extended Abstracts of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22).
Association for Computing Machinery, New York, NY, USA, Article 332, 7 pages.
https://doi.org/10.1145/3491101.3519665

[63] Luke Vink, Viirj Kan, Ken Nakagaki, Daniel Leithinger, Sean Follmer, Philipp
Schoessler, Amit Zoran, and Hiroshi Ishii. 2015. Transform as adaptive and
dynamic furniture. In Proceedings of the 33rd Annual ACM Conference Extended
Abstracts on Human Factors in Computing Systems. 183–183.

[64] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. Ai chains: Transparent
and controllable human-ai interaction by chaining large language model prompts.
In Proceedings of the 2022 CHI conference on human factors in computing systems.
1–22.

[65] Kentaro Yasu. 2022. MagneShape: A Non-electrical Pin-Based Shape-Changing
Display. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology. 1–12.

[66] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–21.

[67] Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. VISAR:
A Human-AI Argumentative Writing Assistant with Visual Programming and
Rapid Draft Prototyping. arXiv preprint arXiv:2304.07810 (2023).

A Formative Exploration Materials
A.1 Inclusion Criteria for Prior Pin-Based

Shape Display Research Selection
This inclusive approach allowed us to capture a broader range
of shape-changing behaviors and applications while maintaining
a focus on displays capable of rendering rich visual information
beyond solely haptic or tactile feedback. To ensure a cohesive and
targeted analysis, we defined the following inclusion criteria(C) for
the reviewed papers:

C.1 Device Specifications:
• Actuation Mechanism: Devices must utilize a pin-based shape
display with linear motion along the z-axis. Exclusions: inflat-
able matrices (e.g., Flat Panel Haptics), devices with bi-stable
movement (e.g., certain braille displays), devices with additional

https://python.langchain.com/docs/modules/model_io/output_parsers/types/structured
https://python.langchain.com/docs/modules/model_io/output_parsers/types/structured
https://arxiv.org/abs/2112.03221
https://api.semanticscholar.org/CorpusID:258823202
https://doi.org/10.1145/3294109.3295621
https://doi.org/10.1145/3294109.3295621
https://openai.com/dall-e
https://openai.com/chatgpt/
https://openai.com/chatgpt/
https://openai.com/product/dall-e-2
https://openai.com/product/dall-e-2
https://www.promptingguide.ai/techniques/fewshot
https://www.promptingguide.ai/techniques/fewshot
https://doi.org/10.1145/3173574.3173865
https://doi.org/10.1145/3308561.3353782
https://doi.org/10.1145/3308561.3353782
https://tangible.media.mit.edu/project/inform-at-cooper-hewitt
https://doi.org/10.1145/3491101.3519665

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

degrees of freedom (e.g., PolySurface, TiltDisplay), and modular
shape displays (e.g., ShapeClip, ShapeBots, HapticBots).

• Device Orientation and Mapping: The shape display must be
oriented on a flat x-y plane. Exclusions: devices like HaptiVec,
Real-Time Physical Prototyping Tools based on Shape-Changing
Displays, and PoCoPo. Only vertically moving pin-based displays
are considered.

• Size and Resolution: Devices should not be excessively small
(e.g., fingertip or watch size) or overly large (e.g., room-scale).
Exclusions: devices simplistically display shapes with few pins
(e.g., LiftTiles, TilePop). Inclusions: devices with higher resolution
capable of detailed shape representation (e.g., Elevate).

C.2 Research Purpose:
• Focus of Research: Exclusions: studies primarily centered on
haptic, tactile display, or visual haptic illusion technologies (e.g.,
TextureTouch). Inclusions: research utilizing hardware for dis-
playing shapes for affordance design (e.g., HapticEdgeDisplay).

• Primary Subject Matter: Research must primarily investigate
the shape display technology itself. Exclusions: studies focus-
ing solely on moving objects on shape displays (e.g., TransDoc,
KineticBlocks, AnimaStage).

A.2 Crowdsourcing Study Details
A.2.1 StudyMaterials. Our aim was to provide participants with
a focused viewing experience that allowed them to perceive and
describe the shape-changing based solely on the physical shape
display itself, without undue distractions or contextual cues. Here
are the rules(R) we applied for selecting the video pool:
R1 Respect raw data: The video clips must be presented in their

original, unedited form without any modifications or re-editing.
It is crucial to respect the integrity of the original data and
present the clips exactly as captured without altering any seg-
ments.

R2 Focus on shape-changing itself: The video clips should not
include scenarios where the shape-changing display is used to
manipulate or interact with external objects (e.g., moving a ball,
sliding a phone in inFORM). The focus should be on describing
the shape-changing behavior itself rather than describing the
shape display as a means of manipulating or interacting with
other objects.

R3 Avoid external visual cues: The video clips should have
minimal visual distractions or cues that could influence or
guide participants’ descriptions of the shape-changing behav-
ior. Specifically, clips should exclude any projected annotations
(e.g., turtle shape in Materiable, hand shape in Physical Telep-
resence), video subtitles (e.g., rain animation in ShapeCanvas),
lighting indicators (e.g., turn on/off lights in Emerge), or other
visual elements that explicitly highlight or draw attention to
the shape changes. The goal is for participants to perceive and
describe the shape transformations based solely on the physical
shape Display itself, without external visual cues potentially
biasing their interpretations.

R4 Avoid potential bias of mechanism: Exclude clips that show
the sequential process or rendering of the shape formation, as

this could lead participants to describe the underlying mecha-
nisms rather than the final shape-changing behavior itself (e.g.,
landscape creation in Elevate).

R5 Avoid flaws scenario: The shape display featured in the video
clips should clearly and cleanly represent the intended shape-
changing behavior without obvious mechanical flaws or im-
perfections that could distract from or misrepresent the shape
transformations. We considered this would mislead partici-
pants into noticing the unwanted parts (e.g., one stuck pin in
HapticEdgeDisplay).

A.2.2 Procedures. Participants were presented with an informed
consent form detailing the study’s purpose, what their participation
entails, the voluntary nature of their involvement, and the mea-
sures taken to protect their privacy and data. This consent process
was facilitated through Qualtrics and Prolific, ensuring that ethical
standards were met before participants proceeded to the main study
tasks. After completing the study, participants were redirected to
Prolific, where their submissions would await approval for com-
pensation. For our study, we have chosen an average rate of $12
per hour, which translates to $1.6 per participant.

B Prompts details in Early Prototype
The Early prototype contains the following three aspects of Few-
Shots Promoting integration: 1)Context Initialization Listing 1: in-
forming the system about the hardware constraints, such as the
specifics of the InFORM-30x30. 2)Objective and Guidelines List-
ing 1: setting the groundwork for how the system should respond.
We defined context on the kind of action or response in ’type’, AI-
generated human-readable explanation or feedback in ’message’,
payload with code in ’content’. 3)Examples and Demonstrations
Listing 2: providing templates for the system to adapt and respond
to user requests efficiently.

1 {

2 "role": "system",

3 "content": "You are a AI software control system

which highly skilled C# and with expertise in Unity.

Your primary responsibility is to generate

behaviors(including shape , motion and Interactions)

on shape display hardwares used within a Unity

environment by controlling individual pins."

4 },

5 {

6 "role": "user",

7 "content": """The default hardware you will be

working with is a 30x30 pin display called InFORM ,

virtually implemented in Unity.

8 There are three other types of hardware you may be

working with: a 12x24 pin display called ShapeShift ,

a 24x24 version pin display called InFORM , and a 5

x10 version pin display called InFORCE.

9 during this conversation , I will notify you of when

to change the hardware type. I will be talking in

the context of 5x10 pin display , and you should

generate code that is compatible with the hardware

type I specify.

10

11 You should always keep in mind the hardware

constraints for specific hardware when generating

code and NEVER forget this at any point of this

conversation. The common constraints for all

hardware are:

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

12 The common constraints for all hardware are:

13 1: Each Pin on shape display can only move in the y

direction for a certain range , which means you can

only modify transform.position.y not x and z.

14

15 Specific to InFORCE hardware:

16 1: Each Pin has a square shape cross -section with

0.018m in diameter. and of length 0.12m.

17 2: Assuming the start position of each pin is 0m, the

range of motion for each of them is only at the y

axis for 0-0.1m.

18

19 Specific to ShapeShift hardware:

20 1: Each Pin has a square shape cross -section with

0.00485m in diameter. and of length 0.152m.

21 2: Assuming the start position of each pin is 0m, the

range of motion for each of them is only at the y

axis for 0-0.05m.

22

23 Specific to InFORM -24x24 hardware:

24 1: Each Pin has a square shape cross -section with

0.00386m in diameter. and of length 0.12m.

25 2: Assuming the start position of each pin is 0m, the

range of motion for each of them is only at the y

axis for 0-0.1m.

26

27 Specific to InFORM -30x30 hardware:

28 1: Each Pin has a square shape cross -section with

0.00386m in diameter. and of length 0.12m.

29 2: Assuming the start position of each pin is 0m, the

range of motion for each of them is only at the y

axis for 0-0.1m.

30

31 Now , I will be talking in the context of InFORM , The

main object in the Unity hierarchy that you'll

attach scripts to is named 'Pins' object. This

object contains 900 child objects representing pins ,

named from 'Pin0' to 'Pin899 '.

32

33 Next , I will be giving you guidelines and

demonstration to you as trainings for you to be

ready to go as a system.

34 """

35 },

36 {

37 "role": "assistant",

38 "content": "Understood. I'll focus on generating C#

code snippets and advice suitable for managing a 30

x30 pin display named InFORM within a Unity

environment. I'll pay special attention to the

constraints you've provided: Pins can only move in

the y-direction within a specific range. For the

InFORM hardware , the range of motion for each pin on

the InFORCE display is 0-0.1m on the y-axis. The

Unity object hierarchy you've described consists of

a main object named 'Pins ', which contains 900 child

objects representing individual pins (named from '

Pin0' to 'Pin899 '). Let's proceed. Would you like to

start with example code for basic pin movement , or

did you have a specific behavior or interaction in

mind?"

39 },

40 #Objective & Guidelines Definition

41 {

42 "role": "user",

43 "content": """

44 To generate the desired output effectively , please

adhere to the following guidelines:

45 1. The output should be straightforward with no

preamble or introductions.

46 2. Ensure there are no errors in the generated code.

47 *3*. You generated code is used to control the

individual pins to create shapes and motions and any

interactions with them , again the the hardware

constraint is that the pin display is of 5*10

dimension and the range of motion for each of them

is only at the y axis for 0-0.1f. You should

generate shape , motion or interactions as naturally

on the shape display as possible while leveraging

the hardware constraints. No matter what shape ,

motion or interactions you generate , the pins should

always conform with the hardware constraints at ALL

TIME.

48 5. Exclusively output in JSON format. Formatted as

49 {

50 "type": ...,

51 "message ": ...,

52 "content ": ...

53 }

54 6. If the output type is a script , name it '

DynamicScript '.

55 7. When generating shapes or motions , consider:

56 a. The method to display the shape on the Shape

display.

57 b. The control protocol to allow user interaction

with the shape.

58 c. How users can bind custom widgets or controls

to these shapes.

59 8. DO NOT escape anything in the script portion of

the JSON output , like '"'.

60 Remember , any given example is not for rote

replication. Understand the underlying principle and

produce generalized results.

61 Next , I will be giving you some example interactions

between user and the system for you to learn how to

behave properly under various scenarios

62 """

63 },

64 {

65 "role": "assistant",

66 "content": "Got it. I will ensure that the generated

output adheres to these guidelines. Specifically , I'

ll provide straightforward and error -free code ,

offer outputs in the required JSON format , save to

the specified location , and factor in the

considerations for shape and motion design. Please

proceed with the specific task or example you'd like

me to start with."

67 },

Listing 1: Pilot System Prompting

1 {

2 "role": "user",

3 "content": """

4 ** Scenario: Creating Static Shape**

5

6 user: Create a heart shape

7

8 chatgpt:

9 {

10 "type": "script",

11 "message ": "Created a heart shape",

12 "content ": \"\"\"

13 using UnityEngine;

14 public class DynamicScript : MonoBehaviour

15 {

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

16 private GameObject [] pins;

17 static private int rows = 30;

18 static private int cols = 30;

19 private float scale = 0.2f; // to fit the

heart shape in the grid

20

21 void Start()

22 {

23 pins = new GameObject[rows * cols];

24 for (int i = 0; i < rows * cols; i++)

25 {

26 pins[i] = GameObject.Find("Pin" + i.

ToString ());

27 }

28 }

29

30 void Update ()

31 {

32 CreateHeartShape ();

33 }

34

35 private void CreateHeartShape ()

36 {

37 for (int row = 0; row < rows; row++)

38 {

39 for (int col = 0; col < cols; col++)

40 {

41 int index = row * cols + col;

42 GameObject pin = pins[index];

43 float x = (col - cols / 2f) *

scale;

44 float y = (rows / 2f - row) *

scale;

45 float equation = Mathf.Pow(x, 2)

+ Mathf.Pow(y - Mathf.Sqrt(Mathf.Abs(x)), 2) - 1;

46

47 if (equation < 0)

48 {

49 pin.transform.position = new

Vector3(pin.transform.position.x, 0.1f, pin.

transform.position.z);

50 }

51 else

52 {

53 pin.transform.position = new

Vector3(pin.transform.position.x, 0, pin.transform.

position.z);

54 }

55 }

56 }

57 }

58 }

59

60 \"\"\"

61 }

62 For this scenario , user is creating a static heart

shape on the shape display , be careful that the

generated shape should be of a reasonable size and

stays within the boundry of the shape display and

user might want to adjust the level of the raised

pins for the shape.

63

64 """

65 },

66 {

67 "role": "assistant",

68 "content": """

69 Understood , this example interaction gives me a good

idea of how to generate code that creates a static

heart shape on the shape display. The code carefully

respects the hardware constraints and allows for

future modifications to the height of the pins. The

generated code is included as a script in the JSON

output , conforming to the user request and

specifications provided. The C# script essentially

loops through each pin to decide its height based on

a heart shape equation , then adjusts the pin's

height accordingly. Now , I'm ready for the next

example interaction scenario you'll be showing me.

70 """

71 },

72

73 {

74 "role": "user",

75 "content": """

76 ** Scenario: Making basic position and size change to

the static shape**

77

78 user: I want to move this heart shape left and right

and repeat , but it stays in the shape display

boundaries.

79

80 chatgpt:

81 {

82 "type": "script",

83 "message ": "Created a ball shape and a button to

control toggling appear and disappear of the ball

shape.",

84 "content ": \"\"\"

85

86 using UnityEngine;

87

88 public class DynamicScript : MonoBehaviour

89 {

90 private GameObject [] pins;

91 static private int rows = 30;

92 static private int cols = 30;

93 private float scale = 0.2f; // to fit the

heart shape in the grid

94 private float offsetX = 0.0f; // Horizontal

offset for moving the heart shape

95 private float speed = 0.05f; // Speed for

moving the heart shape left and right

96

97 void Start()

98 {

99 pins = new GameObject[rows * cols];

100 for (int i = 0; i < rows * cols; i++)

101 {

102 pins[i] = GameObject.Find("Pin" + i.

ToString ());

103 }

104 }

105

106 void Update ()

107 {

108 MoveHeartShape ();

109 CreateHeartShape ();

110 }

111

112 private void MoveHeartShape ()

113 {

114 offsetX += speed;

115 if (offsetX >= 5.0f || offsetX <= -5.0f)

116 {

117 speed = -speed;

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

118 }

119 }

120

121 private void CreateHeartShape ()

122 {

123 for (int row = 0; row < rows; row++)

124 {

125 for (int col = 0; col < cols; col++)

126 {

127 int index = row * cols + col;

128 GameObject pin = pins[index];

129 float x = (col - cols / 2f +

offsetX) * scale;

130 float y = (rows / 2f - row) *

scale;

131 float equation = Mathf.Pow(x, 2)

+ Mathf.Pow(y - Mathf.Sqrt(Mathf.Abs(x)), 2) - 1;

132

133 if (equation < 0)

134 {

135 pin.transform.position = new

Vector3(pin.transform.position.x, 0.1f, pin.

transform.position.z);

136 }

137 else

138 {

139 pin.transform.position = new

Vector3(pin.transform.position.x, 0, pin.transform.

position.z);

140 }

141 }

142 }

143 }

144 }

145 \"\"\"

146 }

147 In this scenario , the user authorized an repeating

left and right moving animation of the heart shape

created in the previous scenario. Bear in mind that

there are other motions that user might create , like

changing the scale of the shape , and also adjusting

the height of the shape(meaning the height of the

raised pins)

148 """

149 },

150 {

151 "role": "assistant",

152 "content": """

153 Understood , the example interaction for this scenario

involves modifying the existing static heart shape

to move it left and right within the shape display

boundaries. The generated code now includes an

Update function that both moves and redraws the

heart shape , respecting hardware constraints. The

concept of an "offset" is introduced in this code to

achieve the motion. The offset is increased or

decreased over time within limits to make the shape

move left and right. The MoveHeartShape function

handles the logic for this. I see that the user

might also be interested in other kinds of motion ,

like resizing the shape or adjusting the height of

the raised pins. These user intentions will require

additional parameters and controls in the code.

154 I'm now ready for the next example interaction

scenario.

155 """

156 },

Listing 2: Pilot System Few-shot Example

C Appendix C
C.1 PromptHelper Prompting
C.1.1 Segmentation Chain. Prompting for Segmentation Chain

1 """

2 You are a smart prompt helper agent who can intelligently

segment prompt into three seperate segments which

will later be dispatched to three script writing AI

agents(primitiveAgent , animationAgent , and

InteractionAgent); as well as differentiating

whether a user prompt is a followup

3 **Input & output Rules**

4 Input: A user defined description of the desired

creations including implicit or explicit references

of shape/motion/interactions

5 Output: A JSON object with the following field

6 "is_followup ": "Boolean",

7 "Authoring Primitive Shape/Motion ": "String",

8 "Authoring Animation ": "String",

9 "Authoring Interaction ": "String"

10

11 1. ** Contextual Awareness **:

12 - Determine if a prompt is a new request or a follow -up

by looking for references to previous interactions.

If unclear , seek clarification or assume it's a new

request.

13

14 2. ** Prompt Segmentation **:

15 - ** Primitive Shape/Motion **: Always include a detailed

description of shapes , motions , and relevant

features. This is essential for every new command.

16 - ** Animation **: Describe changes or movements over time

that occur without user interaction. Include only if

the prompt specifies animation.

17 - ** Interaction **: Focus on user -initiated events , like

pressing buttons made from pins. Include this

segment only when button creation is explicitly

mentioned.

18

19 3. ** Distinct Functionalities & Clear Demarcation Between

Static and Dynamic Descriptions **:

20 - Keep animation and interaction functionalities separate

: Animation is for automatic visual/motion changes;

Interaction is strictly for user -initiated events.

21 - In the Primitive Shape/Motion segment , focus solely on

the static aspects of the creation , such as shape ,

size , and spatial orientation. Avoid implying

dynamic capabilities or movements that suggest

animation. Descriptions of movement , changes over

time , or interactive behaviors should be exclusively

reserved for the Animation and Interaction segments

, respectively.

22

23 4. **Pin -Based Interactions **:

24 - Clearly describe how buttons or triggers are made and

function using pins or pin groups.

25

26 5. ** Clarity and Detail **:

27 - Each segment should be clear and detailed enough to

avoid further clarification and accurately reflect

the user's intent.

28

29 6. ** Managing Ambiguities **:

30 - Resolve ambiguous commands at your discretion , ensuring

accurate segmentation.

31

32 7. **2.5D shape display capability for rendering **:

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

33 - Since the hardware is 2.5D shape display , we cannot

render color , material hardness , etc. Only

Geometries , so Exclude those references since the

display can only show 2.5D elements.

34

35 8. **User Intent Fidelity **:

36 - Stay true to the user's original intent without adding

unnecessary elements.

37

38 9. ** Intelligent Translation and Segmentation **:

39 - Translate and segment user prompts based on their

intended actions and specifications.

40

41 10. ** Handling Redos **:

42 - For commands indicating a redo , repeat the last

output exactly.

43

44 11. ** Instructions for Script Agents **:

45 - At the end of animation and interaction segments ,

include instructions for agents to find parameters

46 in scripts.

47

48 12. ** Primitive Treatment of Waves **:

49 - Treat wave motions as primitives , including their

movement in the shape/motion segment.

50

51 13. **2.5D Display ability **:

52 - Since our system will eventually need to create

constructs on 2.5D shape display , so avoid

explicitly say '3D', as the code generator produce

unrecognizable shapes if '3D' is specified

53

54 14. ** Followup animation/interaction reiteration **:

55 - In case of a followup , when user intends to edit on

an existing primitive , you should reiterate the

existing animation and interaction from previous

contexts

56

57 15. ** Interaction intentions **:

58 - whenever user intends to create button to control

something , that should automatically be intrepreted

as interaction segment , since our system offer

button as a way of control.

59 And If user doesn't specify button , but indicates

that they want to interact with something , you need

to mention the creation of a button to control

something in your interaction segment.

60 """

Listing 3: Segmentation Chain Prompting

C.1.2 Parameter Generation Chain. Prompting for Parameter Gen-
eration Chain

1 """

2 You are an AI specifically trained to analyze and

generate parameters for code constructions that deal

with graphical primitives , animations , and

interactions based on user inputs. Your role

involves understanding the requirements from three

key segments of input provided by the user:

3

4 1. ** Authoring Primitive Shape/Motion **: This segment is

always present and describes the basic shape or

motion to be created. It serves as the foundation

for the other segments.

5

6 2. ** Authoring Animation **: This segment describes how

the primitive is supposed to be animated. It

outlines the motion or transformation that the

primitive undergoes over time.

7

8 3. ** Authoring Interaction **: This segment details any

interactive behavior that should be applied to the

primitive , such as changes in response to user

actions like clicks or mouse movements.

9

10 Your task is to infer and generate a comprehensive list

of parameters that are necessary to implement the

requirements described in these segments. These

parameters should be specifically tailored to

support the functionalities described in both the

animation and interaction segments.

11

12 ### Input

13 Your input will be a JSON object containing three fields

corresponding to the segments mentioned above:

14 - ** Authoring Primitive Shape/Motion **

15 - ** Authoring Animation **

16 - ** Authoring Interaction **

17

18 ### Output

19 Your output should be a string representation of JSON

object containing only one field:

20 ** parameters **: A list of parameter necessary for

implementing the described primitive shape/motion ,

animation , and interaction.

21

22 ### Goal

23 The ultimate goal is to bridge the gap between high -level

descriptions of graphical features and the specific

, technical details required for their

implementation. The parameter you generated will be

sent to specifically construct primitive , this

involves identifying the necessary parameters for

code construction for primitive.

24 However , considering the fact that animation and

interaction will attempts to achieve what is

described in the segment by manipulating primitive

parameters , so you also need to provide necessary

parameter in primitive construction to account for

animations and interactions.

25

26 ### Guidelines:

27 0. Parameter Scope: since the rendering device we have is

a 24x24 shape diplay , so it only have the ability

to render shape geometry and motion related

parameters , do not include parameter such as color ,

or roughness which shape display cannot render.

28 * You should always priortize creating parameters that is

geometery related , and can be used in

Mathematically forming the primitive , that means , if

something abstract is defined in animation or

interaction segment , you should also try to come up

with parameters that can be leveraged mathematically

, that resolves these segments

29

30 1. Height parameter: Make sure the you include a height

parameter to adjust the height of the primitive

31

32 2. parameter as numbers: The idea of the generated

33 parameter is for a later scriptGeneration AI to use the

parameter you provide to parametrically contruct

primitive , hence all parameter should indicate ONLY

number , anything else like: landscapeMesh , or

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

34 weatheringStyle , that might indicate something other than

number is strictly prohibited.

35

36 3. Treat Composite Objects as Single Entities: Whenever

possible , group related elements (e.g., letters

forming a word) into a single object to minimize the

number of parameters needed. This simplifies both

the creation and animation of complex shapes or

motions.

37

38 4: Minimize Parameter Redundancy: Avoid creating separate

parameters for aspects of the animation or

interaction that can be controlled by a single , well

-thought -out parameter. This reduces the complexity

of the code and the effort needed to manage these

parameters.

39

40 5: Focus on Essential Parameters: Identify and generate

only those parameters that are absolutely necessary

for the primitive 's creation , its animation , and any

specified interactions. This ensures clarity and

efficiency in the parameter list.

41

42 6: Logical Grouping of Parameters: Organize parameters in

43 a way that reflects their role in the construction ,

animation , and interaction of the primitive.

Grouping related parameters together can aid in

understanding and managing them.

44

45 7: Focus on the mathematical foundations of the

primitives: Devise parameters that naturally

facilitate animation or interaction through their

inherent mathematical properties , avoiding any

direct or explicit references to the animation or

interaction processes themselves.

46

47 8: Adapt Parameter Design to User Requirements: Tailor

the parameters to the specific needs of the

animation and interaction as described by the user.

Ensure that the parameters provided can adequately

support the described behaviors without unnecessary

complexity.

48

49 9: Clarify Parameter Usage in Descriptions: In the

modified segments for animation and interaction ,

explicitly mention how the parameters are to be used

. This clarifies their purpose and ensures that the

implementation aligns with the intended design.

50

51 10: Efficiency in Parameter Usage: Strive for an

implementation strategy that uses the fewest

parameters possible while still achieving the

desired outcome. This often involves creative

problem -solving to find the most efficient way to

control the primitive 's behavior.

52

53 11: Simplify Interaction/Animation Handling: When

interactions/animation are specified , consider how

they can be managed using existing parameters or

with minimal additional parameters. This keeps the

interaction implementation straightforward and

integrated with the overall design.

54

55 12: Adhere to 2.5D Spatial Constraints:

56 Recognize that shape display is limited to a 2.5D

57 surface , involving only X (horizontal), Y (vertical),

and height (pin elevation) dimensions.

58 Avoid generating parameters that specify spatial

parameters beyond X, Y, and height , to prevent

59 confusion with traditional 3D space representation.

60

61 13: Relationship between Primitive , Animation and

Interaction: Primitive is the main landing 3D

content of the scene , and animation and interaction

is a dynamic manipulation of these primitive

parameters. The parameters you generated are for

Primitives , hence , you need to come up with the

parameter needed for primitive that accounts for

what specified in animation/interaction segments ,

parameter like "animationSpeed" is undesired because

it is not associated with the primitive , and the

code generation AI will not be able to recognize

this parameter when paired by the primitive segment.

62

63 14: Intelligently Design Parameters for Animation and

Interaction:

64 When setting up parameters for animations and

interactions , it's crucial to adopt a strategic

approach. Rather than directly naming parameters

after the specific animation or interaction (e.g., "

pulse" for a pulsing heart), consider how you can

achieve the desired effect through mathematical

means. For instance , if you're animating a heart to

65 pulse , think about the underlying mathematical principle

that can mimic pulsing. In this scenario , varying

the scale increasing and decreasing effectively

simulates a pulsing motion. Thus , a parameter like "

heartScale" should be introduced to control this

aspect , embodying a thoughtful , indirect approach to

parameterization that supports animation and

interaction without explicitly naming them.

66

67 15: Handling abstract or conceptual shapes:

68 For abstract or conceptual shapes such as heart , come up

with a simplified construction of parameters (for

example positionx , positiony , scale , is already

sufficient), so that the code generation agent can

easily form code based on your parameters. The goal

is to create these conceptual shapes visible , not to

make it most realistic.

69 """

Listing 4: Parameter Generation Chain Prompting

C.1.3 Parameter Inference Chain. Prompting for Parameter Infer-
ence Chain

1 """

2 You are a smart agent tasked with evaluating whether a

user -described animation or interaction can be

implemented using a provided list of parameters. You

will receive input as a JSON string containing

parentparam and prompt fields. Your output should

consist of two key components:

3

4 success: A boolean value indicating whether the

parentparam is sufficient to accommodate the user's

prompt.

5 message: A detailed explanation offering recommendations

to the user on how to achieve the described

interaction or animation using the available

parentparam. This should include suggestions for

creative use of the parameters and , if necessary ,

recommendations for additional parameters that are

not included in parentparam but would be required to

fully realize the prompt.

6 Important Note:

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

7 Your evaluation should focus on creatively utilizing the

parentparam to achieve the desired outcome , even if

the solution is not immediately apparent or if the

implementation might only partially fulfill the

prompt. The relationship between parentparam and the

prompt may not always be straightforward. For

instance , if the user's prompt involves controlling

horizontal left and right movement and the

parentparam includes a positionX parameter , this

scenario should be considered a success. This is

because manipulating positionX can indeed result in

horizontal movement , demonstrating an implicit but

effective relationship between the parameter and the

desired animation or interaction. You must think

critically and explore the potential of each

parameter to meet the requirements of the prompt ,

emphasizing the importance of not overlooking the

implicit capabilities of the provided parameters.

8

9 Rules:

10

11 1. **Input Understanding **: Recognize input in the form

of a JSON string that details `parentparam ` and `
prompt `. Understand these fields as the basis for

your evaluation.

12

13 2. ** Success Determination **: Output a boolean value `
success ` indicating whether the provided `
parentparam ` sufficiently accommodates the user's

prompt. True signifies adequacy , while false

indicates insufficiency.

14

15 3. ** Message Formulation **: Provide a `message ` that

includes:

16 - A clear explanation of how the `parentparam ` can or

cannot fulfill the prompt.

17 - Creative recommendations for using available parameters

to achieve the described animation or interaction.

18 - Suggestions for additional parameters not included in `
parentparam ` but necessary for full realization if

the existing set falls short.

19

20 4. ** Creative Utilization **: Emphasize the innovative use

of `parentparam ` to achieve the prompt 's goals.

Even if a direct solution seems absent , explore and

highlight indirect or partial methods that can serve

the intended purpose.

21

22 5. ** Implicit Relationships **: Acknowledge and capitalize

on the less obvious connections between `
parentparam ` and the prompt. Consider a parameter 's

potential beyond its explicit function if it can

contribute to fulfilling the request.

23

24 6. ** Updated Parameters Inclusion **: For scenarios deemed

failures , include an `updatedParams ` field in your

output. This field should list the original

parameters plus any additional ones needed to make

the implementation possible , providing a

constructive path forward for achieving the

25 desired animation or interaction.

26

27 7. ** Critical Thinking **: Apply careful analysis and

creative problem -solving to bridge gaps between

available parameters and the animation or

interaction described in the prompt. Avoid

dismissing a prompt as unachievable without

thoroughly exploring alternative approaches.

28

29 8. **Clear Communication **: Ensure your explanations are

understandable , offering actionable insights and

steps that users can follow to implement your

recommendations.

30

31 9. ** Feedback Loop **: Incorporate a mechanism or suggest

a method for users to refine their prompts or

parameters based on your feedback , encouraging

iterative improvement towards achieving the desired

outcome.

32 """

Listing 5: Parameter Inference Chain

C.1.4 Code Instruction Chain. Prompting for Code Instruction
Chain

1 """

2 You are an AI specifically trained to analyze the given

primitives , animations , and interactions segments as

well as a list of parameters. Your role involves

understanding the given segments and based on the

parameter given how to come up with code

instructions for these three segments:

3

4 1. ** Authoring Primitive Shape/Motion **: This segment is

always present and describes the basic shape or

motion to be created. It serves as the foundation

for the other segments.

5

6 2. ** Authoring Animation **: This segment describes how

the primitive is supposed to be animated. It

outlines the motion or transformation that the

primitive undergoes over time.

7

8 3. ** Authoring Interaction **: This segment details any

interactive behavior that should be applied to the

primitive , such as changes in response to user

actions like clicks or mouse movements.

9

10 Your task is to infer and generate a comprehensive list

of parameters that are necessary to implement the

requirements described in these segments. These

parameters should be specifically tailored to

support the functionalities described in both the

animation and interaction segments. Moreover , you

are required to modify the descriptions of the

animation and interaction segments to explicitly

indicate which parameters are to be used for

implementing the described behaviors.

11

12 ### Input

13 Your input will be a JSON object containing three fields

corresponding to the segments mentioned above as

well as parameters:

14 - ** Authoring Primitive Shape/Motion **

15 - ** Authoring Animation **

16 - ** Authoring Interaction **

17 - ** parameters **: A list of strings , where each string is

the name of a parameter necessary for implementing

the described primitive shape/motion , animation , and

interaction.

18

19 ### Output

20 Your output should be a JSON object containing three

fields:

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

21 1. ** Authoring Primitive Shape/Motion **: This section

must enumerate each parameter outlined in the input

and describe its role in creating or defining the

primitive shape or motion. This description should

be technical , indicating how each parameter affects

the geometry , positioning , or initial state of the

primitive in the code.

22

23 2/3. ** Modified Authoring Animation and Authoring

Interaction **: These fields should contain the

original descriptions but modified to include

specific references to the parameters you've

identified. This modification should make it clear

which parameters are involved in the animation and

interaction functionalities.

24 For animation segment: you need to inform the code

generation agent how to create the code for

animation by manipulation of (what parameters)

25 For interaction segment: you need to inform the code

generation agent to create button to control (which

parameter) in what way , for example , if there is

PosX parameter , and the user wants to create

interaction that move the object left , inform the

button functionality to decrease PosX when button is

pressed

26

27 ### Goal

28 The primary goal is to convert the provided input

segments into clear , actionable coding instructions

that precisely use the specified parameters. This

process is designed to bridge the conceptual and

practical implementation gap , ensuring a smooth

transition from visual and interactive designs to

fully functional code. A detailed explanation of

each parameter 's role is crucial , as it allows

developers to easily grasp and execute the provided

instructions , leading to the creation of dynamic and

interactive visual elements.

29

30 ### Guidelines:

31 1: Handling 'None' Inputs: If the input for any segment

(Authoring Primitive Shape/Motion , Authoring

Animation , or Authoring Interaction) is "None ," or

suggesting that it is empty , your output for that

particular segment should be "None." This indicates

that no action or code is required for that segment.

32

33 2: 2.5D Shape Display Considerations: The code

instructions you generate for the primitive shape or

motion are intended for use in creating 3D

constructs visualized on 2.5D pin -based shape

displays. This unique display medium requires

specific consideration in how shapes are represented

, particularly in their depth and interaction with

light to achieve the desired 3D effect on a 2.5D

surface.

34

35 3: Incorporating the 'Height ' Parameter: Given the 2.5D

nature of the shape display , it's important to

include and properly utilize a 'Height ' parameter.

This parameter is crucial for controlling the

36 perceived height or depth of the 3D constructs on the

shape display. In your code instructions , make sure

to articulate how the 'Height ' parameter influences

the overall representation of the construct.

37

38 4: Utility of Every Parameter in Primitive Creation: When

detailing the creation of a primitive shape or

motion , emphasize that every listed parameter must

39 serve a specific purpose. There should be no

assumption of redundancy among the parameters nor

they should be assumed to be ignored in the initial

configuration. For each parameter , provide clear

instructions on how it contributes to the

construction of the primitive , whether it affects

its size , position , rotation , or any other attribute

. Make sure that you create instructions that

accounts for ALL of the parameters listed in the

input.

40

41 5: Handling the update of code instructions for primitive

: There are cases where you need to update the

primitive instructions , this is signifed by a input

of primitive code instruction containing directives

of how a subset of input parameters are utilized ,

note that here because we have updated the

parameters so that the current code instruction didn

't cover the new parameters , you need to incorporate

these uncovered parameters properly and form a new

code instruction.

42

43 6: If you see a segment which contains already a

satisfying code instruction covering all of the

parameters you can output that segment as is.

44 """

Listing 6: Code Instruction Chain

C.2 Primitive Agent
C.2.1 Prompting. Prompting for primitive Agent

1 """

2 ### AI Software Writing System: JavaScript Expertise

Required

3

4 ** Objective :** Generate functions that create primitives

(static shapes and motions) on a 24x24 pin -based

shape display hardware , controlling individual pins.

5

6 ** Training :** You will learn through few -shot examples to

identify patterns in code and generate new scripts

based on user prompts.

7

8 ### Rules and Guidance:

9

10 1. **Input Prompt :** You will receive a user prompt

describing the intended shape or motion , as well as

a parameter list which you need to use for creating

that primitive. Your task is to generate a JSON

output containing `type `, `message `, and `content ` (

the script), where `type ` must be `primitive `.
11

12 2. ** Output Format :** `type ` will always be "primitive",

and `message ` will be the response message to users;

Produce a script as the `content ` in the JSON

output.

13

14 3. ** Examples :** Learn from provided examples to create

primitive script structures for shape displays. Note

: Assume no pre -existing functions; define your own

as needed.

15

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

16 4. ** Parameter Definitions :** Define these parameters ,

which given in the parameters in input , within the `
initializeParams ` function , clearly stating their

purpose , and make sure you utilize all of them

effectively in the construction of the primitive ,

all of the parameters should be assigned a value in

initializeParams and should only have number as

values.

17

18 5. **How to Produce code **: Begin by using the list of

parameters in the input exactly by their names in a

function named `initializeParams ()`. Use these

parameters to construct the shape/motion , then

return the parameters. And dynamicScript (make sure

you exactly have the name `dynamicScript `) function

acting as the main loop , create other helper

function as needed.

19

20 6. **Code Structure :** For dynamic shapes (e.g., waves ,

animated patterns), encapsulate logic in a `
dynamicScript ` function using an IIFE to maintain

state privately without global scope pollution. And

make sure that to make dynamicScript function as the

main logic function

21

22 7. **Code Content :** Ensure the generated code is

functional , with no placeholders.

23

24 8. ** ShapeDisplay Object :** Utilize the following

predefined library objects and functions:

25 - `ShapeDisplay ` Object:

26 - `grid_x `: Horizontal grid length (24).

27 - `grid_y `: Vertical grid length (24).

28 - `Pins `: Storage for all 24x24 pin objects.

29 - `getPin(int index)`: Returns the pin object at

the specified index.

30

31 - `Pin` Object:

32 - `setPos(float height)`: Sets the pin's height.

33

34 9. ** Adhere to 2.5D Spatial Constraints **:

35 Recognize that shape display is limited to a 2.5D

surface , involving only X (horizontal), Y (vertical)

, and height (pin elevation) dimensions.

36 try to make scripts that makes the user creation

become visible in this 2.5D surface , and prevent

confusion with traditional 3D space representation.

37

38 10. ** Geometry construction **: For geometrical shapes ,

you should try to contruct the shapes mathematically

, and leverage the parameters defined in the input.

39

40 11. **main loop definition **: In the code you will need

to define the main loop as the exact name *

dynamicScript*, as we will have external reference

to this exact function name.

41

42 12. ** Function Definition within the script **: You should

define all the functions within the script , and don

't assume a function exists without defining them.

43

44 ### Goal: Generate working JavaScript code based on user

prompts , adhering to the specified rules and

structure for creating primitives on a shape display

45 """

Listing 7: Primitive Agent Prompting

C.2.2 Code Example in Collection. Code Example

1 {

2 "input":

3 """

4 {

5 "Prompt ": "Generate a customizable square

shape",

6 "parameters ":[squareScale , squarePosX ,

squarePosY , squareRotation , squareHeight]

7 }

8 """,

9 "output": """

10 {

11 "type": "primitive",

12 "message ": "Created a square shape",

13 "content ": \"\"\"

14 // Defines initial setup values such as scale

, position , rotation , and height of the square

15 function initializeParams () {

16 return {

17 squareScale: 0.5, // Scale factor for

the square size relative to the display grid

18 squarePosX: Math.floor(ShapeDisplay.

grid_x / 2), // X position of the square 's center

19 squarePosY: Math.floor(ShapeDisplay.

grid_y / 2), // Y position of the square 's center

20 squareRotation: 0, // Initial

rotation angle of the square

21 squareHeight: 25, // Height of the

square pins

22 };

23 }

24

25 // Calculates the new position of a point

after rotation around the origin

26 function calculateRotatedPosition(x, y,

rotation) {

27 return {

28 rotatedX: x * Math.cos(-rotation) - y

* Math.sin(-rotation), // X coordinate after

rotation

29 rotatedY: x * Math.sin(-rotation) + y

* Math.cos(-rotation), // Y coordinate after

rotation

30 };

31 }

32

33 // Determines if a point is within the

defined square boundaries after rotation

34 function checkInBounds(rotatedX , rotatedY ,

maxDimension_x , maxDimension_y) {

35 return (

36 rotatedX >= -maxDimension_x / 2 &&

37 rotatedX <= maxDimension_x / 2 &&

38 rotatedY >= -maxDimension_y / 2 &&

39 rotatedY <= maxDimension_y / 2

40);

41 }

42

43 // Main function to orchestrate the dynamic

script

44 // Uses initialized parameters to set the

display according to the square pattern

45 function dynamicScript(deltaTime , params) {

46 const {

47 squareScale ,

48 squarePosX ,

49 squarePosY ,

50 squareRotation ,

51 squareHeight ,

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

52 } = params;

53 const maxDimension_x = ShapeDisplay.

grid_x * squareScale; // Max width of the square

54 const maxDimension_y = ShapeDisplay.

grid_y * squareScale; // Max height of the square

55

56 // Iterate over all pins to set their

positions based on the square pattern

57 ShapeDisplay.Pins.forEach ((pin , index) =>

{

58 let x = (index % ShapeDisplay.grid_x)

- squarePosX;

59 let y = Math.floor(index /

ShapeDisplay.grid_x) - squarePosY;

60

61 // Calculate rotated position for

each pin

62 const { rotatedX , rotatedY } =

calculateRotatedPosition(

63 x,

64 y,

65 squareRotation

66);

67

68 // Check if the point falls within

the bounds and set pin height if true

69 if (checkInBounds(rotatedX , rotatedY ,

maxDimension_x , maxDimension_y)) {

70 pin.setPos(squareHeight);

71 }

72 });

73 }

74 \"\"\"

75 }

76 """

77 },

Listing 8: Primitive Agent Vector Store Example

C.3 Animation Agent
C.3.1 Prompting. Prompting for Animation Agent

1 """

2 ### AI Animation Script Generator: JavaScript Expertise

for 3D Design

3

4 ** Objective :** Use the parameters within an existing

script that construct a primitive shape to generate

animations. Utilize JavaScript to manipulate these

parameters according to user prompts , creating

dynamic animations on a shape display.

5

6 ** Training :** Through few -shot examples , identify

patterns in existing code and learn to generate new

animation scripts based on user prompts.

7

8 ### Rules and Guidance:

9

10 1. **Input Prompt :** Receive user prompts describing the

desired animation. And parentparams indicate that a

list of parameter exposed to you for the purpose of

making the animation by manipulating them.

11

12 2. ** Output Format :** You should output a JSON that has

three fields: type: which is always animation ,

message: the message feedback of the system , and

content which is the script itself that you are

going to create , for script , you should manipulate

parentparams 's value provided and adjust them to

achieve the intended animation.

13

14 3. ** Important Note :** In generating the animation script

, **do not start from scratch **. An existing script

and its parent parameters are already provided. Your

task is to analyze the user prompt and manipulate

these parent parameters to create the intended

animation.

15

16 4. ** Examples :** Study provided examples to understand

how to manipulate parameters for animations

effectively. Assume the existence of certain

functions and objects as outlined below but do not

copy parameters verbatim.

17

18 5. ** Explicit Function Naming :** Adhere to naming

conventions seen in examples. Use clear and

descriptive names for any new functions or

parameters you introduce.

19

20 6. ** Parameter Manipulation :** Directly manipulate

existing parameters (parentparams) to achieve the

animation. Do not introduce unnecessary global

variables or functions.

21

22 7. ** External Libraries and Objects :**

23 - ** ShapeDisplay Object :**

24 - `grid_x `: Horizontal grid length , set to 24.

25 - `grid_y `: Vertical grid length , set to 24.

26 - Use this object to understand the display 's

dimensions and manipulate the primitive 's position

and scale accordingly.

27

28 8. **Code Content :** Ensure the generated code is

functional and executable , with no placeholders. You

need to complete the code as described in the input

, place holders are absolutely prohibited.

Dynamically adjust parameters over time described in

the input if necessary.

29

30 9. ** Learning from Examples :** Pay close attention to the

structure and logic of the example scripts. Your

task is to apply similar patterns to new prompts ,

adapting the logic to fit the requested animations.

31

32 10. **No Assumption of Function Existence :** While

certain objects and their properties are given , do

not assume the existence of additional functions

outside of those specified or exemplified. Define

any new logic needed to achieve the animation.

33

34 11. ** deltaTime usage :** deltaTime is in seconds not in

miliseconds , so use deltaTime as is no need to

divide by 1000

35

36 12. ** parentParams reference :** remember that to

reference the parameters given in the input you need

to use parentparams .(parameters in the input list)

37

38 ### Goal: Produce JavaScript code that dynamically

animates primitives on a shape display , adhering to

the user's prompt and following the provided

guidelines and examples.

39 """

Listing 9: Animation Agent Prompting

C.3.2 Code Example in Collection. Code Example
1 {

2 "input": """

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

3 {

4 "Prompt ": "create a left and right repeat

animation for the square shape",

5 "parentparams ":[squareScale: 0.5, squarePosX:

Math.floor(ShapeDisplay.grid_x / 2), squarePosY:

Math.floor(ShapeDisplay.grid_y / 2), squareRotation:

0, squareHeight: 25]

6 }

7 """,

8 "output":

9 """

10 {

11 "type": "animation",

12 "message ": "Created left and right repeat

animation for the square shape",

13 "content ":

14 \"\"\"

15 // Function to initialize and return the

parameters used by the dynamic script

16 function initializeParams () {

17 return {

18 speed: 2, // Speed of the

movement , defined as 2 units. Adjust this value to

increase or decrease the speed. Note that the

animation parameter should NOT repeat the parameter

in primitive scripts , but rather control parameters

for the animation

19 };

20 }

21

22 // Define a function that encapsulates

its own state using a closure

23 const dynamicScript = (function () {

24 let direction = 1; // Initialize

direction: 1 signifies moving right , -1 signifies

moving left

25

26 // Return a function that updates the

position based on parameters

27 return function(deltaTime , params ,

parentparams) {

28 const { speed } = params; //

Destructure speed from params for easy access

29

30 // Conditional check to reverse

direction when hitting boundaries

31 if (

32 parentparams.squarePosX >=

ShapeDisplay.grid_x || // Right boundary check

33 parentparams.squarePosX <= 0

// Left boundary check

34) {

35 direction *= -1; // Reverse

direction upon hitting a boundary

36 }

37

38 // Update the square 's position

on the X axis based on direction , speed , and elapsed

time

39 parentparams.squarePosX +=

direction * speed * deltaTime;

40 };

41 })();

42 \"\"\"

43 }

44 """

45 },

Listing 10: Animation Agent Vector Store Example

C.4 Interaction Agent
C.4.1 Prompting. Prompting for Interaction Agent

1 """

2 ### AI Software Writing System: JavaScript Expertise

Required

3 ** Objective :**

4 You are tasked with acting as a smart 3D design coder

agent. Your role is to write interaction scripts

based on an existing script that describes a

primitive and a user command aiming to create some

interaction with that primitive.

5

6 ** Important Note :**

7 - You'll be working with an existing script where certain

parameters (`parentparams `) are exposed for

manipulating through a button to achieve the

intended interaction.

8

9 **Input :**

10 - User prompt

11 - `parentparams `: Parameters from the existing script

that are exposed for authoring interaction(button)

to control.

12

13 ** Output :**

14 - Generate a JSON response containing the following keys:

15 - `type `: Must be "interaction ".

16 - `message `: A descriptive message about the interaction.

17 - `content `: The interaction script.

18

19 **Rules and Guidance :**

20 1. Consider the primitives as already created. Your task

is to write an interaction script to author a button

that controls the existing primitive (e.g.,

movement , deformation).

21 2. You will be given examples to learn from. Ensure you

understand how to construct responses and generate

scripts from these examples.

22 3. Follow explicit function naming conventions as shown

in the examples , especially for object functions and

parameters.

23 4. Clearly define all parameters within the interaction

script , specifying their purposes.

24 5. The interaction script should only author buttons as

interaction to manipulate parameters defined in the

`parentparams `
25

26 **Code Writing Guidelines :**

27 - Begin with a function named `
initializeInteractionParameters ()` that includes a

list of buttons and other parameters. Each button

should be a dictionary containing exactly four

parameters:

28 - `id`: A unique identifier for the button group.

29 - `size `: Button size (1 for a single unit , 2 for a

larger 2x2 button).

30 - `position `: Calculated to place the button at the

center of the grid , with `x` (horizontal index 0-11)

and `y` (vertical index 0-11).

31 - `init_height `: Initial z-height of the button in the

grid.

32 - Reference to the parameters given in the input using `
parentparams.` followed by the parameter name.

33

34 ** Externally Defined Functions and Objects :**

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

35 - `initializeButtons(params)`: Initialize buttons using

the defined parameters at the start. Always call

this at the start of the `dynamicInteraction `
function.

36 - `ShapeDisplay ` Object:

37 - `grid_x `: Grid horizontal length (24).

38 - `grid_y `: Grid vertical length (24).

39 - `Pin` Object:

40 - `isButton `: Boolean value indicating if a pin is a

button.

41 - `isPressing `: Boolean value indicating if a pin is

currently being pressed.

42 - `buttonGroup_id `: The ID of the button you assigned in

parameters.

43 """

Listing 11: Interaction Agent Prompting

C.4.2 Code Example in Collection. Code Example

1 {

2 "input": """

3 {

4 "Prompt ": "create two buttons that controls

left and right movement of the button",

5 "parentparams ": [squareScale: 0.5, squarePosX

: Math.floor(ShapeDisplay.grid_x / 2), squarePosY:

Math.floor(ShapeDisplay.grid_y / 2), squareRotation:

0,squareHeight: 25]

6 }

7 """,

8 "output":

9 """

10 {

11 "type": "interaction",

12 "message ": "created two buttons that controls

left and right movement of the button",

13 "content ":\"\"\"

14 // Initializes interaction parameters

with button configurations and movement speed

15 function initializeInteractionParameters

() {

16 return {

17 // Always make button as a list ,

which contains all button instantiations and declare

it as "button :[...]"

18 buttons: [// Array of button

configurations

19 {

20 id: 1, // Unique

identifier for the first button

21 size: 1, // Size of the

button , 1 indicates a single unit button

22 position: [// Position

of the first button , calculated to be on the right

side

23 Math.floor ((2 *

ShapeDisplay.grid_x) / 3),

24 Math.floor(

ShapeDisplay.grid_y - 4),

25],

26 init_height: 50, //

Initial height of the button above the baseline

27 },

28 {

29 id: 2, // Unique

identifier for the second button

30 size: 1, // Size of the

button , also a single unit button

31 position: [// Position

of the second button , calculated to be on the left

side

32 Math.floor(

ShapeDisplay.grid_x / 3),

33 Math.floor(

ShapeDisplay.grid_y - 4),

34],

35 init_height: 50, //

Initial height of the button above the baseline

36 },

37],

38 moveSpeed: 0.1, // Speed at which

the square will move when a button is pressed

39 };

40 }

41

42 // Main interaction logic , processes

button presses and adjusts the square 's position

accordingly

43 function dynamicInteraction(deltaTime ,

params , parentParams) {

44 initializeButtons(params); //

Initializes the buttons at the start

45

46 // Iterates over all pins to process

button presses and move the square

47 ShapeDisplay.Pins.forEach ((pin) => {

48 if (pin.isButton) {

49 processButtonPress(pin ,

params , parentParams); // Processes button press for

movement

50 }

51 });

52 }

53

54 // Processes button presses to move the

square left or right based on the button pressed

55 function processButtonPress(pin , params ,

parentParams) {

56 if (pin.isPressing) { // Checks if

the button (pin) is being pressed

57 if (pin.buttonGroup_id == 1) {

58 parentParams.squarePosX +=

params.moveSpeed; // Moves the square to the right

for button 1

59 } else if (pin.buttonGroup_id ==

2) {

60 parentParams.squarePosX -=

params.moveSpeed; // Moves the square to the left

for button 2

61 }

62 }

63 }

64 \"\"\"

65 }

66 """

67 },

Listing 12: Interaction Agent Vector Store Example

D Technical Evaluation Input Prompts
1 Please create a grid of long rods that move up and down

depending on the location of the product.

2 pins move from center to exterior in a wave.

3 Create a shape changing effect where the shapes undulate

from the center as if a rock was dropped in a pond.

4 Create pins that correspond to movement above it.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Qian and Gao, et al.

5 Can you create a sine wave that continues from right to

left with a large amplitude located at the far lower

half?

6 create a serious of pegs that rise randomly

7 Create a series of blocks in staircase format and end

with blocks upright with two blocks in a row from

the lower bottom of the screen to the top of the

screen

8 Staircase shaped blocks spawn out of nowhere and move to

the left

9 When I press the top left square on the left side , make

both the vertical line on the left and horizontal

line on the bottom taller and longer while making

the square shape grow bigger overall and growing

towards the top right.

10 make the letter t appear out of the surface , then e, then

i

11 Create a shape changing effect that shifts away from the

ball as I move it around the screen.

12 Start with a medium wedge shape. As an object is moved

along the surface behind it, the wedge should shift

in the same direction , staying roughly the same size

.

13 Have sticks move up and down across one after the other

two create a wave like effect.

14 lift up slides up from left to right

15 Show a person scrolling on their phone , zoomed in so you

can see the right border of the phone , and show pins

moving up and down correlating with the scrolling.

16 Create a line of pins on the side of the smartphone that

produces a wave like motion parallel to the

direction the smartphone is scrolling.

17 Create a ring where a ball can roll around in a circle in

, and then create an arrow in the middle pointing

away from where the ball currently is in the ring.

18 Display Alphabet as I motion left to right.

19 Create a large square on a table that creates a tidal

wave effect from a cell phone placed in the upper

right -hand corner

20 Create a shape that can hold a phone or a similar gadget

21 I want the lighted objects to protrude upward randomly.

The motion does not need to be in sync with each

other. There can be more than one object that

protrudes at the same time.

22 Create a visual effect of a square grid of 1 inch cubes

that are raised up in a torus , with a depression in

the middle and circular depression on the outside

perimeter of the torus. When a sphere is placed in

the center of the torus lay all of the cubes at the

same level.

23 Can you make the pins pop to replicate a ripple effect of

water , starting from the middle and flowing

outwards.

24 Can you show me blocks that rise and fall when touched to

create a waterdrop effect?

25 make a heart get bigger and smaller with a pop background

26 lift cubes up in rows to form a square and change it rows

and put the others level down

27 make a jagged sawtooth waveform constantly moving right

to left with new sawtooths coming into view on the

right as others leave to the left. When a hand drops

in front of a sawtooth , change to a series of tall

towers moving from right to left.

28 create a ripple effect coming from the bottom right

corner , then again from the top left corner

29 The shapes need to wave outwards.

30 When you press your hand on the pieces , make them form a

ripple effect , moving outward away from where you

pressed.

31 Create a circle with a smaller circle inside and only

allow one to pop up at once

32 make the table appear to undulate in a wave from left to

right

33 Make the cubes run in a wave motion from left to right

34 create graph lines that move from shortest to longest

when the long line is touched

35 Construct a pattern of cubes that fellow the input from a

red spherical shape. Raise cubes with input from

the sphere on the opposite side of the space.

36 Make the shapes appear in as a moving wave , from right to

left. The waves are identical and have a peak to

the right with a gradual decline to the left.

37 Back left rises , back 2nd rises but not as high , back

right rises a little bit higher than back 2, then

they all go down. Back left rises again , then down ,

then back up again and stays up. Back 2 rises again ,

then back right , and they all go down again just

like the first time.

38 Create 3D objects to move with motion or direction of

hands or any sensor

39 Draw a scaled pattern of blocks from right to left on a

conveyor

40 create a bowl for the oranges using the pins. make it

shaped to fit

41 Use the pin graph to display the letters T, E, and I, one

at a time and in upper case , filling the entire

board with each letter.

42 Some of the pieces rise up, around the inner rectangle.

They form a ripple effect. Pieces toward the outer

edge rise up as well then they all form a pulsating

movement.

43 raise pins in the middle to create a hollow light bulb

shape , inverse the pins , then raise the pins again

to a filled light bulb shape

44 Create a shape that creates a ripple effect on blocks

whereever it is touched

45 Can you make a hill mountain type design that follows the

red ball

46 Create 3 vertically long areas that contain multiple

lines that move together from left to right to form

wave shapes.

47 make 4 imges that are different from each other in sizes

and colors , and have them move down a line 1 at a

time.

48 Create three 3d rectangles displaying approximately 10

rows of moving waves , using a grids of rectangles.

49 Can you show me an animation of rectangular blocks that

move in groups , starting from the right side of the

screen to the left?

50 On the far side of the surface , create an effect in which

the pins rise and fall in a steady cadence , like

that of a sewing machine , with the pins alternating

between extending and retracting from left to right.

The row of pins directly in front of this effect

should remain stationary in a pattern of two pins

extended 1/3 of the way and one pin extended fully.

In the middle of the surface , form a wave shape

using one row of pins. The shape should start in the

middle of the surface , then split into two waves

moving away from the middle towards the left and

right sides of the surface. On the nearest side of

the surface , form a wave shape that moves from right

to left.

Listing 13: TechEval Prompts

E Summary of user creations during user study

SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Category Subcategory Keywords of Attempted Creation Result

Primitive

Basic shapes
Circle Success
Cube Success
Triangle Success

3D and complex shape

Sphere Success
Firework Success
Fan Success
Mushroom Success
Piano Keyboard Success
Volcano Success
City Block Success
Dune-like Mountain Success
’hello’ & ’tiger’ text Success
Tetrahedral Partial Success
Moon and Earth Partial Success
Four-Wheel Car Partial Success
Bird Head Partial Success
Eyes Partial Success
Cat Face Failed
Zombies Failed
Whale Failed
Lung Shape Failed
Hand Failed

Iconic shape

Star Success
Daisy with 8 Petals Success
Stick Figure Success
Smiley Face Partial Success

Pattern
Ripple in Pool Success
Water Drop Partial Success
Heartbeat Graph Failed

Animation

Basic motion

Star Twinkle Success
Circling around Success
Chasing Success
Raining effect Success
Running Bird&Man Partial Success
Orbiting Failed

Transformation
Eye blinking Failed
Morphing Circle to Square Failed
Simulate pressing Piano Keyboard Failed

Interaction

Trigger

Button to Appear Text Success
Button for Firework Animation Success
Button to Move Circle randomly Failed
Button to Change Direction/Angle Failed
Button to Jump Circle Failed

Mapping and control

Button to Rotate Star Success
Buttons to move Star&Circle Success
Button to Control Skyscraper Height Success
Button to Control Speed Failed

Table 1: Summary of user study results

	Abstract
	1 Introduction
	2 Related Work
	2.1 Authoring and control methods for pin-based Shape Display
	2.2 Text Authoring and Generative AI in HCI

	3 Formative Exploration
	3.1 Method
	3.2 Primitive
	3.3 Animation
	3.4 Interaction

	4 Early Prototype and Pilot Study
	4.1 Early Prototype
	4.2 Pilot Study
	4.3 Findings in Challenges and Informing Feature Improvments

	5 SHAPE-IT
	5.1 System Walkthrough
	5.2 Implementation

	6 Performance Evaluation
	6.1 Method

	7 User Evaluation
	7.1 Participants
	7.2 Procedures and Tasks
	7.3 Results

	8 Potential Application Spaces
	9 Limitation & Future Work
	9.1 Prototype Limitation & Potential Improvements
	9.2 Potential Future Direction and Implication for the General Approach

	10 Conclusion
	Acknowledgments
	References
	A Formative Exploration Materials
	A.1 Inclusion Criteria for Prior Pin-Based Shape Display Research Selection
	A.2 Crowdsourcing Study Details

	B Prompts details in Early Prototype
	C Appendix C
	C.1 PromptHelper Prompting
	C.2 Primitive Agent
	C.3 Animation Agent
	C.4 Interaction Agent

	D Technical Evaluation Input Prompts
	E Summary of user creations during user study

